Model produksi massal parasitoid Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae) menggunakan kutu putih Phenacoccus manihoti Matile-Ferrero di laboratorium

Mass production model of the parasitoid Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae) using the mealybug Phenacoccus manihoti Matile-Ferrero in the laboratory

Authors

  • Muhammad Alimun Wasik Program Studi Pengendalian Hama Terpadu, Fakultas Pertanian, IPB University, Jalan Kamper, Kampus IPB Dramaga, Bogor 16680, Indonesia https://orcid.org/0009-0000-7758-9210
  • Dewi Sartiami Departemen Proteksi Tanaman, Fakultas Pertanian, IPB University, Jalan Kamper, Kampus IPB Dramaga, Bogor 16680, Indonesia
  • Ali Nurmansyah Departemen Proteksi Tanaman, Fakultas Pertanian, IPB University, Jalan Kamper, Kampus IPB Dramaga, Bogor 16680, Indonesia

DOI:

https://doi.org/10.5994/jei.22.1.114

Keywords:

biological control, cassava, cost estimation, mummy, natural enemy

Abstract

Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae) is a specific parasitoid that plays an important role in the biological control of the cassava mealybug Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae). Successful large-scale biological control requires the availability of this parasitoid in sufficient quantities through optimal and efficient mass production. This study aims to develop a mass production model for A. lopezi, taking into account mass rearing methods and the economic aspects of mass production. The experiment consisted of four treatments, namely 3, 6, 9, and 12 cassava cuttings of Manggu variety aged 2 weeks per cage measuring 75 cm × 50 cm × 50 cm. Each cutting was infested with 120 third-instar P. manihoti nymphs and four 2-day-old female A. lopezi obtained from laboratory rearing. Increasing the number of cuttings had a significant effect on the number of mummies produced, with the highest production achieved in the 9-cutting treatment (742.2 ± 12.21 mealybug mummies). The sex ratio of parasitoid progeny (1:2.21) was dominated by females, accounting for 68.91%. The production cost estimation included tools, materials, and labor wages. The total production cost per cage was IDR 48,425, with a cost per mummy of IDR 65. These findings provide technical and economic foundations for developing efficient and sustainable mass production systems of A. lopezi to support P. manihoti biological control programs in cassava plantations.

Downloads

Download data is not yet available.

References

Adriani E, Rauf A, Pudjianto. 2016. Laju enkapsulasi parasitoid Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae) oleh kutu putih singkong, Phenacoccus manihoti Matile Ferrero (Hemiptera: Pseudococcidae). Jurnal Entomologi Indonesia. 13:147–155. DOI: https://doi.org/10.5994/jei.13.3.147.

Adriani E, Rauf A, Pudjianto. 2020. Influence of host stage on oviposition, development, and sex ratio of Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae), a parasitoid of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae). Jurnal Hama Penyakit Tumbuhan Tropika. 20:130–139. DOI: https://doi.org/10.23960/jhptt.220130-139.

Alvarenga CD, Dias V, Stuhl C, Sivinski J. 2015. Contrasting brood-sex ratio flexibility in two opiine (Hymenoptera: Braconidae) parasitoids of Tephritid (Diptera) fruit flies. Journal of Insect Behavior. 29:25–36. DOI: https://doi.org/10.1007/s10905-015-9532-2.

Benelli G, Giunti G, Tena A, Desneux N, Caselli A, Canale A. 2017. The impact of adult diet on parasitoid reproductive performance. Journal of Pest Science. 90:807–823. DOI: https://doi.org/10.1007/s10340-017-0835-2.

[CABI] Centre of Agriculture and Biosciences International. 2022. Phenacoccus manihoti (Cassava Mealybug). Wallingford: CABI International. DOI: https://doi.org/10.1079/cabicompendium.40173.

Calatayud PA, Le Ru B. 2006. Cassava-Mealybug Interactions. Paris: Institut de Recherche Pour le Developpement (IRD). DOI: https://doi.org/10.4000/books.irdeditions.9865.

Chen W, Weng Q, Nie R, Zhang H, Jing X, Wang M, Li Y, Mao J, Zhang L. 2021. Optimizing photoperiod, exposure time, and host-to-parasitoid ratio for mass-rearing of Telenomus remus, an egg parasitoid of Spodoptera frugiperda, on Spodoptera litura eggs. Insects. 12:1050. DOI: https://doi.org/10.3390/insects12121050.

Couchoux C, van Nouhuys S. 2014. Effects of intraspecific competition and host-parasitoid developmental timing on foraging behaviour of a parasitoid wasp. Journal of Insect Behavior. 27:283–301. DOI: https://doi.org/10.1007/s10905-013-9420-6.

DaSilva CSB, Morelli R, Parra JRP. 2016. Effects of self-superparasitism and temperature on biological traits of two Neotropical Trichogramma (Hymenoptera: Trichogrammatidae) Species. Journal of Economic Entomology. 109:1555–1563. DOI: https://doi.org/10.1093/jee/tow126.

Diaz-Fleischer F, Galvez C, Montoya P. 2015. Oviposition, superparasitism, and egg load in the solitary parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae): Response to host availability. Annals of the Entomological Society of America. 108:235–241. DOI: https://doi.org/10.1093/aesa/sav012.

Dutra TM, Batista MG, Teixeira JCA, Todorova S, Oliveira L, Tavares J, Borgesf I, Soaresf AO. 2023. Economic and financial model to the mass-rearing of Macrolophus pygmaeus (Rambur) (Heteroptera: Miridae), a biological control agent against the tomato moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in protected culture. Pest Management Science. 79:3712–3720. DOI: https://doi.org/10.1002/ps.7552.

El-Wakeil N, Saleh M, Abu-hashim M. 2019. Cottage Industry of Biocontrol Agents and Their Applications: Practical Aspects to Deal Biologically with Pests and Stresses Facing Strategic Crops. Cham: Springer Nature Switzerland AG. DOI: https://doi.org/10.1007/978-3-030-33161-0.

Eliopoulos PA, Kapranas A, Givropoulou EG, Hardy LCW. 2016. Reproductive efficiency of the bethylid wasp Cephalonomia tarsalis: the influences of spatial structure and host density. Bulletin of Entomological Research. 107:139–147. DOI: https://doi.org/10.1017/S0007485316000651.

Essien, Anietie R, Odebiyi, Adebayo J, Ekanem, Sunday M. 2013. Alternate host plant of Phenacoccus manihoti Matile Ferrero (Homoptera: Pseudococcidae), the cassava mealybug. Journal of Environmental Management. 2:457–466.

Fanani MZ, Rauf A, Maryana N, Nurmansyah A, Hindayana D. 2019. Geographic distribution of the invasive mealybug Phenacoccus manihoti and its introduced parasitoid Anagyrus lopezi in parts of Indonesia. Biodiversitas. 20:3751–3757. DOI: https://doi.org/10.13057/biodiv/d201238.

Fanani MZ, Rauf A, Maryana N, Nurmansyah A, Hindayana D. 2020. Parasitism of cassava mealybug by Anagyrus lopezi: Effects of varying host and parasitoid densities. Biodiversitas. 21:4973–4980. DOI: https://doi.org/10.13057/biodiv/d211064.

Farahani HK, Ashouri A, Zibaee A, Abroon P, Alford L. 2016. The effect of host nutritional quality on multiple components of Trichogramma brassicae fitness. Bulletin of Entomological Research. 106:633–641. DOI: https://doi.org/10.1017/S000748531600033X.

Favaro R, Roved J, Girolami V, Martinez-Sanudo I, Mazzon L. 2018. Host instar influence on offspring sex ratio and female preference of Neodryinus typhlocybae (Ashmead) (Hymenoptera, Dryinidae) parasitoid of Metcalfa pruinosa (Say) (Homoptera, Flatidae). Biological Control. 125:113–120. DOI: https://doi.org/10.1016/j.biocontrol.2018.05.009.

Feng DD, Li P, Zhou ZS, Xu ZF. 2014. Parasitism potential of Aenasius bambawalei on the invasive mealybug Phenacoccus solenopsis. Biocontrol Science and Technology. 24:1333–1338. DOI: https://doi.org/10.1080/09583157.2014.939946.

Gao SK, Wei K, Tang YL, Wang XY, Yang ZQ. 2016. Effect of parasitoid density on the timing of parasitism and development duration of progeny in Sclerodermus pupariae (Hymenoptera: Bethylidae). Biological Control. 97:57–62. DOI: https://doi.org/10.1016/j.biocontrol.2016.03.003.

Iranipour S, BenaMoleai P, Asgari S, Michaud JP. 2020. Foraging egg parasitoids, Trissolcus vassilievi (Hymenoptera: Platygastridae), respond to host density and conspecific competitors in a patchy laboratory environment. Journal of Economic Entomology. 112:760–769. DOI: https://doi.org/10.1093/jee/toz345.

Iqbal MS, Abdin Z, Arshad M, Abbas SK, Tahir M, Jamil A, Manzoor A. 2016. The role of parasitoid age on the fecundity and sex ratio of the parasitoid, Aenasius bambawalei (Hayat) (Hymenoptera: Encyrtidae). Pakistan Journal of Zoology. 48:67–72.

James B, Yaninek J, Neuenschwander P, Cudjoe A, Modder W, Eschendu N, Toko M. 2000. Pest Control in Cassava Farm. Lagos: International Institute of Tropical Agriculture.

Joodaki R, Zandi-Sohani N, Zarghami S, Yarahmadi F. 2018. Temperature-dependent functional response of Aenasius bambawalei (Hymenoptera: Encyrtidae) to different population densities of the cotton mealybug Phenacoccus solenopsis (Hemiptera: Pseudococcidae). European Journal of Entomology. 115:326–331. DOI: https://doi.org/10.14411/eje.2018.032.

Karmakar P, Shera PS. 2018. Seasonal and biological interactions between the parasitoid, Aenasius arizonensis (Girault) and its host, Phenacoccus solenopsis Tinsley on cotton. Phytoparasitica. 46:661–670. DOI: https://doi.org/10.1007/s12600-018-0696-0.

Karyani RD, Maryana N, Rauf A. 2016. Pengujian kekhususan inang parasitoid Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae) pada empat spesies kutu putih yang berasosiasi dengan tanaman singkong. Jurnal Entomologi Indonesia. 13:30–39. DOI: https://doi.org/10.5994/jei.13.1.30.

Le Ru B, Tertuliano M. 1993. Tolerance of different host‐plants to the cassava mealybug Phenacoccus manihoti Matile‐Ferrero (Homoptera: Pseudococcidae). Journal of Pest Management. 39:379–384. DOI: https://doi.org/10.1080/09670879309371826.

van Lenteren JC. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl. 57:1–20. DOI: https://doi.org/10.1007/s10526-011-9395-1.

Li X, Zhu L, Meng L, Li B. 2017. Brood size and sex ratio in response to host quality and wasp traits in the gregarious parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae). PeerJ. 5:e2919. DOI: https://doi.org/10.7717/peerj.2919.

Lin L, Ali S, Wu J. 2018. Influences of varying host: Parasitoid ratios on parasitism of whitefly by three different parasitoid species. Egyptian Journal of Biological Pest Control. 28:59. DOI: https://doi.org/10.1186/s41938-018-0050-3.

Liu JF, Cheng XW, Atif I, Hai YZ, Mao FY. 2022. Effects of host ages and release strategies on the performance of the pupal parasitoid Spalangia endius on the melon fly Bactrocera cucurbitae. Agriculture. 12:1629. DOI: https://doi.org/10.3390/agriculture12101629.

Lopez P, Rosales D, Flores S, Montoya P. 2021. Mutual interference in the mass-reared fruit fly parasitoid, Diachasmimorpha longicaudata (Hymenoptera: Braconidae). BioControl. 66:649–658. DOI: https://doi.org/10.1007/s10526-021-10102-w.

Luo SP, Li HM, Lu YH, Zhang F, Haye T, Kuhlmann U, Wu K. 2014. Functional response and mutual interference of Peristenus spretus (Hymenoptera: Braconidae), a parasitoid of Apolygus lucorum (Heteroptera: Miridae). Biocontrol Science and Technology. 24:247–256. DOI: https://doi.org/10.1080/09583157.2013.855703.

Maharani JS, Rauf A, Maryana N. 2019. Masa hidup imago, progeni dan kemampuan parasitasi Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae), parasitoid kutu putih singkong. Jurnal Entomologi Indonesia. 16:138–150. DOI: https://doi.org/10.5994/jei.16.3.138.

Mawela KV, Kfir R, Kruger K. 2013. Effect of temperature and host species on parasitism, development time and sex ratio of the egg parasitoid Trichogrammatoidea lutea Girault (Hymenoptera: Trichogrammatidae). Biological Control. 64:211–216. DOI: https://doi.org/10.1016/j.biocontrol.2012.11.017.

Meilin A, Trisyono YA, Martono E, Buchori D. 2012. Teknik perbanyakan massal parasitoid Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymaridae) dengan kotak plastik. Jurnal Entomologi Indonesia. 9:7–13. DOI: https://doi.org/10.5994/jei.9.1.7.

Naimah F, Sartiami D, Maryana N, Anwar R, Pudjianto. 2023. Parasitoid of cassava mealybug, Anagyrus lopezi (Hymenoptera: Encyrtidae): Mummy size, adult emergence, sex ratio, and parasitization level. Biodiversitas. 24:1629–1634. DOI: https://doi.org/10.13057/biodiv/d240335.

Nakamichi Y, Tuda M, Wajnberg E. 2020. Intraspecific interference between native parasitoids modified by a non‐native parasitoid and its consequence on population dynamics. Ecological Entomology. 45:1263–1271. DOI: https://doi.org/10.1111/een.12909.

Okuyama T. 2024. Density-dependent distributions of hosts and parasitoids resulting from density-independent dispersal rules: implications for host–parasitoid interactions and population dynamics. Movement Ecology. 83:1–10. DOI: https://doi.org/10.1186/s40462-024-00525-2.

Ongaratto S, Pinto KJ, Berto RM, Nornberg SD, Gonçalves RS, Garcia MS, Nava DE. 2019. Influence of the host diet on the performance of Doryctobracon areolatus (Hymenoptera: Braconidae). Brazilian Journal of Biology. 80:727–734. DOI: http://dx.doi.org/10.1590/1519-6984.217968.

Parratt SR, Frost CL, Schenkel MA, Rice A, Hurst GDD, King KC. 2016. Superparasitism drives heritable symbiont epidemiology and host sex ratio in a wasp. PLoS Pathogens. 12:e1005629. DOI: https://doi.org/10.1371/journal.ppat.1005629.

Parsa S, Kondo T, Winotai A. 2012. The cassava mealybug (Phenacoccus manihoti) in Asia: first records, potential distribution, and an identification key. Plos ONE. 10:e47675. DOI: https://doi.org/10.1371/journal.pone.0047675.

de Pedro L, Beitia F, Ferrara F, Asis JD, Sabater-Munoz B, Tormos J. 2017. Effect of host density and location on the percentage parasitism, fertility and induced mortality of Aganaspis daci (Hymenoptera: Figitidae), a parasitoid of Ceratitis capitata (Diptera: Tephritidae). Crop Protection. 92:160–167. DOI: https://doi.org/10.1016/j.cropro.2016.11.007.

Perier JD, Haseeb M, Solis D, Kanga LHB, Legaspi JC. 2023. Estimating the cost of production of two pentatomids and one braconid for the biocontrol of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize fields in Florida. Insects. 169:1–10. DOI: https://doi.org/10.3390/insects14020169.

del Pino M, Gallego JR, Suarez EH, Cabello T. 2020. Effect of temperature on life history and parasitization behavior of Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae). Insects. 482:1–18. DOI: https://doi.org/10.3390/insects11080482.

Poncio S, Montoya P, Cancino J, Nava DE. 2016. Determining the functional response and mutual interference of Utetes anastrephae (Hymenoptera: Braconidae) on Anastrepha obliqua (Diptera: Tephritidae) larvae for mass rearing purposes. Annals of the Entomological Society of America. 109:518–525. DOI: https://doi.org/10.1093/aesa/saw031.

Poncio S, Nunes AM, Goncalves RDS, Lisboa H, Berto RM, Garcia MS, Nava DE. 2018. Strategies for establishing a rearing technique for the fruit fly parasitoid: Doryctobracon brasiliensis (Hymenoptera: Braconidae). Journal of Economic Entomology. 20:1–9. DOI: https://doi.org/10.1093/jee/toy058.

Rebu JU, Rauf A. 2018. Survei hama eksotik Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae) pada tanaman singkong di Kabupaten Kupang. In: Prosiding Seminar Nasional Pertanian ke V Pengelolaan Pertanian Lahan Kering Berkelanjutan untuk Menunjang Kedaulatan Pangan. (Kupang, 26 Oktober 2018). pp. 247–248. Kupang, Indonesian

Renard S, Calatayud PA, Pierre JS, Le Ru B. 1998. Recognition behavior of the cassava mealybug Phenacoccus manihoti Matile-Ferrero (Homoptera: Pseudococcidae) at the leaf surface of different host plants. Journal of Insect Behavior. 11:429–450. DOI: https://doi.org/10.1023/A:1020911016042.

Sagarra LA, Vincent C, Stewart RK. 2000. Mutual interference among female Anagyrus kamali Moursi (Hymenoptera: Encyrtidae) and its impact on fecundity, progeny production and sex ratio. Biocontrol Science and Technology. 10:239–244. DOI: https://doi.org/10.1080/09583150050044510.

Saini A, Sharma PL. 2018. Functional response and mutual interference of Cotesia vestalis (Hymenoptera: Braconidae) on Plutella xylostella (Lepidoptera: Plutellidae). Journal of Entomological Science. 53:162–170. DOI: https://doi.org/10.18474/JES17-36.1.

Sandanayaka WRM, Santos K, Davis VA, Jenkins HK, Bell VA. 2021. Reproductive success and progeny sex ratio of a laboratory colony of Anagyrus fusciventris (Hymenoptera: Encyrtidae). Biocontrol Science and Technology. 31:1388–1402. DOI: https://doi.org/10.1080/09583157.2021.1955827.

Sarkar M, Suasaard W, Uraichuen S. 2015. Host stage preference and suitability of Allotropa suasaardi Sarkar & Polaszek (Hymenoptera: Platygasteridae), a newly identified parasitoid of pink cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae). Songklanakarin Journal of Science and Technology. 37:381–387.

Sartiami D, Watson GW, Roff M, Hanifah MD, Idris AB. 2015. First record of cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), in Malaysia. Zootaxa. 3957:235–238. DOI: https://doi.org/10.11646/zootaxa.3957.2.8.

Skovgard HG, Nachman. 2015. Effect of mutual interference on the ability of Spalangia cameroni (Hymenoptera: Pteromalidae) to attack and parasitize pupae of Stomoxys calcitrans (Diptera: Muscidae). Environmental Entomology. 19:1076–1084. DOI: https://doi.org/10.1093/ee/nvv096.

Thancharoen A, Lankaew S, Moonjuntha P, Wongphanuwat T, Sangtongpraow B, Ngoenklan R, Kittipadakul P, Wyckhuys KAG. 2018. Effective biological control of an invasive mealybug pest enhances root yield in cassava. Journal of Pest Science. 91:1199–1211. DOI: https://doi.org/10.1007/s10340-018-1012-y.

Tuan DN, Sam L, Zhang C, Bao CNN, Takano S, Takasu K. 2020. Taro Colocasia esculenta as an alternative host plant for rearing cassava mealybug (Hemiptera: Pseudococcidae) and its parasitoid Anagyrus lopezi (Hymenoptera: Encyrtidae). Applied Entomology and Zoology. 55:233–243. DOI: https://doi.org/10.1007/s13355-020-00690-x.

Ueno T. 2015. Effects of host size and laboratory rearing on offspring development and sex ratio in the solitary parasitoid Agrothereutes lanceolatus (Hymenoptera: Ichneumonidae). European Journal of Entomology. 112:281–287. DOI: https://doi.org/10.14411/eje.2015.048.

Vacari AM, Bortoli SA, Borba DF, Martins IM. 2012. Quality of Cotesia favipes (Hymenoptera: Braconidae) reared at different host densities and the estimated cost of its commercial production. Biological Control. 63:102–106. DOI: https://doi.org/10.1016/j.biocontrol.2012.06.009.

Vieira JGA, Kruger AP, Scheuneumann T, Garcez AM, Morais MC, Garcia FRM, Nava DE, Bernardi D. 2020. Effect of temperature on the development time and life-time fecundity of Trichopria anastrephae parasitizing Drosophila suzukii. Journal of Applied Entomology. 144:857–865. DOI: https://doi.org/10.1111/jen.12799.

Vieira NF, Pomari-Fernandes A, Lemes AA, Vacari AM, De Bortoli AS, Bueno AF. 2017. Cost of production of Telenomus remus (Hymenoptera: Platygastridae) grown in natural and alternative hosts. Journal of Economic Entomology. 110:2724–2726. DOI: https://doi.org/10.1093/jee/tox271.

Wang S, Libo W, Jiawen L, Dayu Z, Tongxian L. 2021. Multiple mating of Aphelinus asychis enhance the number of female progeny but shorten the longevity. Insects. 12:823. DOI: https://doi.org/10.3390/insects12090823.

Wang X, Aparicio EM, Duan JJ, Gould J, Hoelmer KA. 2020. Optimizing parasitoid and host densities for efficient rearing of Ontsira mellipes (Hymenoptera: Braconidae) on asian longhorned beetle (Coleoptera: Cerambycidae). Environmental Entomology. 49:1041–1048. DOI: https://doi.org/10.1093/ee/nvaa086.

Wang ZZ, Liu YQ, Shi M, Huang JH, Chen XX. 2019. Parasitoid wasps as effective biological control agents. Journal of Integrative Agriculture. 18:705–715. DOI: https://doi.org/10.1016/S2095-3119(18)62078-7.

Wardani N, Rauf A, Winasa IW, Santoso S. 2019. Effect of invasive pest Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae) in cassava. International Journal of Agriculture Environment and Biotechnology. 5:1440–1445. DOI: https://doi.org/10.22161/ijeab.45.24.

Wardani N. 2015. Kutu Putih Ubi Kayu Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae), Hama Invasif Baru di Indonesia. Disertasi. Bogor: Institut Pertanian Bogor.

Warsi S, Chicas-Mosier AM, Balusu RR, Jacobson AL, Fadamiro HY. 2023. Effects of food source availability, host egg: parasitoid ratios, and host exposure times on the developmental biology of Megacopta cribraria egg parasitoids. Insects. 755:1–20. DOI: https://doi.org/10.3390/insects14090755.

Williams DJ, Granara de Willink MC. 1992. Mealybugs of Central and South America. Wallingford: CAB International.

Wyckhuys KAG, Rauf A, Ketelaar J. 2014. Parasitoid introduced into Indonesia: part of a region-wide campaign to tackle emerging cassava pests and diseases. Biocontrol News and Information. 35:35–37.

Yang X-B, Campos-Figueroa M, Silva A, Henne DC. 2015. Functional response, prey stage preference, and mutual interference of the Tamarixia triozae (Hymenoptera: Eulophidae) on tomato and bell pepper. Journal of Economic Entomology. 108:414–424. DOI: https://doi.org/10.1093/jee/tou048.

Yazdani M, Keller M. 2015. Mutual interference in Dolichogenidea tasmanica (Cameron) (Hymenoptera: Braconidae) when foraging for patchily-distributed light brown apple moth. Biological Control. 86:1–6. DOI: https://doi.org/10.1016/j.biocontrol.2015.01.004.

Yonow T, Kriticos DJ, Ota N. 2017. The potential distribution of cassava mealybug (Phenacoccus manihoti), a threat to food security for the poor. PLoS ONE. 12:e0173265. DOI: https://doi.org/10.1371/journal.pone.0173265.

Zhang J, Huang J, Lu Y, Xia T. 2016. Effects of temperature and host stage on the parasitization rate and offspring sex ratio of Aenasius bambawalei Hayat in Phenacoccus solenopsis Tinsley. PeerJ. 4:e1586. DOI: https://doi.org/10.7717/peerj.1586.

Zhang YZ, Jin Z, Miksanek JR, Tuda M. 2021. Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio. Scientific Reports. 11:23215. DOI: https://doi.org/10.1038/s41598-021-02713-1.

Published

2025-10-25

How to Cite

Wasik, M. A., Dewi Sartiami, & Ali Nurmansyah. (2025). Model produksi massal parasitoid Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae) menggunakan kutu putih Phenacoccus manihoti Matile-Ferrero di laboratorium: Mass production model of the parasitoid Anagyrus lopezi (De Santis) (Hymenoptera: Encyrtidae) using the mealybug Phenacoccus manihoti Matile-Ferrero in the laboratory. Jurnal Entomologi Indonesia, 22(2), 114–125. https://doi.org/10.5994/jei.22.1.114