Pengaruh komposisi lanskap pertanian terhadap kelimpahan, tingkat serangan, dan parasitisme Spodoptera frugiperda (Smith)
Effect of agricultural landscape composition on abundance, attack rate, and parasitism of Spodoptera frugiperda (Smith
DOI:
https://doi.org/10.5994/jei.21.3.247Keywords:
biological control agent, fall armyworm, landscape scale, pest suppressionAbstract
Landscape management in an agroecosystem is part of an ecological approach aimed at conserving biological control to suppress the abundance of pests and crop damage. This study investigates how agricultural landscape composition influences the abundance and attack rates of Spodoptera frugiperda and its parasitoids’ abundance and parasitism rates. The research assessed landscape characteristics in maize fields around Bogor, including class area (CA) and the number of patches (NP) of agricultural and semi-natural habitats. A 300-meter radius buffer was used to evaluate these features. Eggs and larvae of S. frugiperda were collected and reared in the laboratory to observe their parasitized and non-parasitized development. The influence of landscape composition on the abundance, attack rate, and parasitism of S. frugiperda was analyzed using generalized linear models. The results indicate that landscape composition affects the abundance and attack rate of S. frugiperda and influences the abundance and parasitism rate of parasitoids. Increasing the agricultural class area can increase the abundance of S. frugiperda larvae. In addition, increasing the NP and CA of semi-natural habitats can reduce the infestation rate of S. frugiperda. The elevation of maize areas also shows an influence on the abundance of parasitoids and the parasitism of larvae. In contrast, the age of the maize affects the abundance and attack of S. frugiperda. These findings highlight the importance of landscape composition, particularly the presence of semi-natural habitats, in managing pest populations effectively. This ecological approach offers valuable insights for sustainable pest control strategies in agricultural practices.
Downloads
References
Afandhi A, Fernando I, Widjayanti T, Maulidi AK, Radifan HI, Setiawan Y. 2022. Impact of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), invasion on maize and the native Spodoptera litura (Fabricius) in East Java, Indonesia, and evaluation of the virulence of some indigenous entomopathogenic fungus. Egyptian Journal of Biological Pest Control. 32:1–8. DOI: https://doi.org/10.1186/s41938-022-00541-7.
Ali K, Johnson BA, Putzenlechner B, Wyss D, Ali K, Johnson BA. 2022. Land-use and land-cover classification in semi-arid areas from medium-resolution remote-sensing imagery: A deep learning approach. Sensors. 22:1–21. DOI: https://doi.org/10.3390/S22228750.
Alignier A, Raymond L, Deconchat M, Menozzi P, Monteil C, Sarthou JP, Vialatte A, Ouin A. 2014. The effect of semi-natural habitats on aphids and their natural enemies across spatial and temporal scales. Biological Control. 77:76–82. DOI: https://doi.org/10.1016/j.biocontrol.2014.06.006.
Álvarez HA, Morente M, Oi FS, Rodríguez E, Campos M, Ruano F. 2019. Semi-natural habitat complexity affects abundance and movement of natural enemies in organic olive orchards. Agriculture, Ecosystems & Environment. 285:106618. DOI: https://doi.org/10.1016/j.agee.2019.106618.
Aristizábal N, Metzger JP. 2019. Landscape structure regulates pest control provided by ants in sun coffee farms. Journal of Applied Ecology. 56:21–30. DOI: https://doi.org/10.1111/1365-2664.13283.
Aune S, Bryn A, Hovstad KA. 2018. Loss of semi-natural grassland in a boreal landscape: Impacts of agricultural intensification and abandonment. Journal of Land Use Science. 13:375–390. DOI: https://doi.org/10.1080/1747423X.2018.1539779.
Bianchi FJJA, Booij CJH, Tscharntke T. 2006. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences. 273:1715–1727. DOI: https://doi.org/10.1098/rspb.2006.3530.
Blitzer EJ, Dormann CF, Holzschuh A, Klein AM, Rand TA, Tscharntke T. 2012. Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems & Environment. 146:34–43. DOI: https://doi.org/10.1016/j.agee.2011.09.005.
Bouzar-Essaidi K, Branco M, Battisti A, Garcia A, Fernandes MR, Chabane Y, Bouzemarene M, et al. 2021. Response of the egg parasitoids of the pine processionary moth to host density and forest cover at the southern edge of the range. Agricultural and Forest Entomology. 23:212–221. DOI: https://doi.org/10.1111/afe.12423.
Breiman L. 2001. Random forests. Machine Learning. 45:5–32. DOI: https://doi.org/10.1023/A:1010933404324.
Brévault T, Clouvel P. 2019. Pest management: Reconciling farming practices and natural regulations. Crop Protection. 115:1–6. DOI: https://doi.org/10.1016/j.cropro.2018.09.003.
Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C. 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters. 14:922–932. DOI: https://doi.org/10.1111/j.1461-0248.2011.01642.x.
Chen H, Wang Y, Huang L, Xu C-F, Li J-H, Wang F-Y, Cheng W, et al. 2022. Flight capability and the low temperature threshold of a Chinese field population of the fall armyworm Spodoptera frugiperda. Insects. 13:1–11. DOI: https://doi.org/10.3390/insects13050422.
Clemente-Orta G, Madeira F, Batuecas I, Sossai S, Juárez-Escario A, Albajes R. 2020. Changes in landscape composition influence the abundance of insects on maize: The role of fruit orchards and alfalfa crops. Agriculture, Ecosystems & Environment. 291:106805. DOI: https://doi.org/10.1016/j.agee.2019.106805.
CSIRO. 1991. Insects of Australia, Volume 2: A Textbook for Students and Research Workers. 2nd ed., Vol. 2. Melbourne: Melbourne University Publishing.
Fernandez-Triana J, Shaw M, Boudreault C, Beaudin M, Broad G. 2020. Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae). Zookeys. 920:1–1089. DOI: https://doi.org/10.3897/zookeys.920.39128.
Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE. 2009. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecological Applications. 19:143–154. DOI: https://doi.org/10.1890/07-1265.1.
Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random forests for land cover classification. Pattern Recognition Letters. 27:294–300. DOI: https://doi.org/10.1016/j.patrec.2005.08.011.
González E, Štrobl M, Janšta P, Hovorka T, Kadlec T, Knapp M. 2022. Artificial temporary non-crop habitats support parasitoids on arable land. Biological Conservation. 265:109409. DOI: 10.1016/j.biocon.2021.109409.
Goulet H, Huber JT. 1993. Hymenoptera of The World: An Identification Guide to Families. Ottawa: Agriculture Canada Publication.
Harrison RD, Thierfelder C, Baudron F, Chinwada P, Midega C, Schaffner U, Berg J van den. 2019. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management. 243:318–330. DOI: https://doi.org/10.1016/j.jenvman.2019.05.011.
Herlinda S, Simbolon IMP, Hasbi, Suwandi S, Suparman. 2022. Host plant species of the new invasive pest, fall armyworm (Spodoptera frugiperda) in South Sumatra. IOP Conference Series: Earth and Environmental Science. 995:012034. DOI: https://doi.org/10.1088/1755-1315/995/1/012034.
Herlinda S, Suharjo R, Sinaga ME, Fawwazi F, Suwandi. 2021. First report of occurrence of corn and rice strains of fall armyworm, Spodoptera frugiperda in South Sumatra, Indonesia and its damage in maize. Journal of the Saudi Society of Agricultural Sciences. 21:412–419 DOI: https://doi.org/10.1016/J.JSSAS.2021.11.003.
Hutasoit RT, Kalqutny SH, Widiarta IN. 2020. Spatial distribution pattern, bionomic, and demographic parameters of a new invasive species of armyworm Spodoptera frugiperda (Lepidoptera; Noctuidae) in maize of South Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity. 21:3576–3582. DOI: https://doi.org/10.13057/biodiv/d210821.
Jonsson M, Raphael IA, Ekbom B, Kyamanywa S, Karungi J. 2015. Contrasting effects of shade level and altitude on two important coffee pests. Journal of Pest Science. 88:281–287. DOI: https://doi.org/10.1007/s10340-014-0615-1.
Jordon MW, Hackett TD, Aboagye-Antwi F, Eziah VY, Lewis OT. 2022. Effects of distance from semi-natural habitat on fall armyworm (Spodoptera frugiperda, J. E. Smith) and its potential natural enemies in Ghana. Bulletin of Entomological Research. 112:343–353. DOI: https://doi.org/10.1017/S0007485321000894.
Kalqutny SH, Nonci N, Muis A. 2021. The incidence of fall armyworm Spodoptera frugiperda J.E. Smith (FAW) (Lepidoptera: Pyralidae), a newly invasive corn pest in Indonesia. IOP Conference Series: Earth and Environmental Science. 911:012056. DOI: https://doi.org/10.1088/1755-1315/911/1/012056.
Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, Gratton C, et al. 2018. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America. 115:E7863–E7870. National Academy of Sciences. DOI: https://doi.org/10.1073/pnas.1800042115.
Keerthi MC, Suroshe SS, Doddachowdappa S, Shivakumara KT, Mahesha HS, Rana VS, Gupta A, Murukesan A, Casini R, Elansary HO, Shakil NA. 2023. Bio-intensive tactics for the management of invasive fall armyworm for organic maize production. Plants. 12:1–18. DOI: https://doi.org/10.3390/plants12030685.
Kennedy GG, Huseth AS. 2022. Pest species respond differently to farm field size. Proceedings of the National Academy of Sciences of the United States of America. 119:1–3. DOI: https://doi.org/10.1073/pnas.2214082119.
Landis DA. 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology. 18:1–12. DOI: https://doi.org/10.1016/j.baae.2016.07.005.
Laterza I, Dioli P, Tamburini G. 2023. Semi-natural habitats support populations of stink bug pests in agricultural landscapes. Agriculture, Ecosystems & Environment. 342:108223. DOI: https://doi.org/10.1016/j.agee.2022.108223.
Martin EA, Seo B, Park CR, Reineking B, Steffan-Dewenter I. 2016. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecological Applications. 26:448–462. DOI: https://doi.org/10.1890/15-0856.
Maruthadurai R, Ramesh R. 2019. Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. Phytoparasitica. 48:15–23. DOI: https://doi.org/10.1007/S12600-019-00771-W.
McHugh NM, Moreby S, Lof ME, Werf W Van der, Holland JM. 2020. The contribution of semi-natural habitats to biological control is dependent on sentinel prey type. Journal of Applied Ecology. 57:914–925. DOI: https://doi.org/10.1111/1365-2664.13596.
Mukkun L, Kleden YL, Simamora AV. 2021. Detection of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in maize field in East Flores District, East Nusa Tenggara Province, Indonesia. International Journal of Tropical Drylands. 5:20–26. DOI: https://doi.org/10.13057/tropdrylands/t050104.
Nelly N, Hamid H, Lina EC, Yunisman. 2021. Distribution and genetic diversity of Spodoptera frugiperda J. E. Smith (Noctuidae: Lepidoptera) on maize in West Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity. 22:2504–2511. DOI: https://doi.org/10.13057/BIODIV/D220507.
Nonci N, Kalgutny SH, Mirsam H, Muis A, Azrai M, Aqil M. 2019. Pengenalan Fall Armyworm (Spodoptera frugiperda J.E. Smith) Hama Baru pada Tanaman Jagung di Indonesia. Badan Penelitian dan Pengembangan Pertanian Balai Penelitian Tanaman Serealia. Vol. 73. Maros: Balai Penelitian Tanaman Serealia.
Nurkomar I, Putra ILI, Buchori D, Setiawan F. 2024. Association of a global invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) with local parasitoids: Prospects for a new approach in selecting biological control agents. Insects. 15:1–16. DOI: https://doi.org/10.3390/insects15030205.
Nurkomar I, Putra ILI, Trisnawati DW, Saman M, Pangestu RG, Triyono A. 2021. The existence and population dynamic of new fall armyworm species Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae) in Yogyakarta, Indonesia. IOP Conference Series: Earth and Environmental Science. 752:012023. DOI: https://doi.org/10.1088/1755-1315/752/1/012023.
Perez-Alvarez R, Nault BA, Poveda K. 2018. Contrasting effects of landscape composition on crop yield mediated by specialist herbivores. Ecological Applications. 28:842–853. DOI: https://doi.org/10.1002/eap.1695.
Perez-Alvarez R, Nault BA, Poveda K. 2019. Effectiveness of augmentative biological control depends on landscape context. Scientific Reports 9:1–15. DOI: https://doi.org/10.1038/s41598-019-45041-1.
Plećaš M, Gagić V, Janković M, Petrović-Obradović O, Kavallieratos NG, Tomanović Ž, Thies C, Tscharntke T, Ćetković A. 2014. Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agriculture, Ecosystems & Environment. 183:1–10. DOI: https://doi.org/10.1016/j.agee.2013.10.016.
Poveda K., Gómez MI., Martínez E. 2008. Diversification practices: Their effect on pest regulation and production. Revista Colombiana de Entomologia. 34:131–144. DOI: https://doi.org/10.25100/socolen.v34i2.9269.
Qiu S, He B, Yin C, Liao Z. 2017. Assessments of sentinel-2 vegetation red-edge spectral bands for improving land cover classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W7:871–874. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-W7-871-2017.
R Core Team. 2024. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Retrieved May 1, 2024, from https://www.r-project.org/
Rizali A, Himawan T, Yuniasari N, Yuliastanti N, Bachtiar MA, Rafid EDR. 2022. Contribution of agricultural landscape composition on shaping the interaction between pests and natural enemies in cacao agroforestry. AGRIVITA Journal of Agricultural Science. 44:479–489. DOI: https://doi.org/10.17503/agrivita.v44i3.3388.
Rizali A, Karindah S, Himawan T, Meiadi MLT, Rahardjo BT, Nurindah, Sahari B. 2019. Parasitoid wasp communities on oil palm plantation: Effects of natural habitat existence are obscured by lepidopteran abundance. Journal of Asia-Pacific Entomology. 22:903–907. DOI: https://doi.org/10.1016/j.aspen.2019.07.012.
Rizali A, Oktaviyani, Putri SDPS, Doananda M, Linggani A. 2021. Invasion of fall armyworm Spodoptera frugiperda, a new invasive pest, alters native herbivore attack intensity and natural enemy diversity. Biodiversitas. 22:3482–3488. DOI: https://doi.org/10.13057/BIODIV/D220847.
Rosenheim JA, Cluff E, Lippey MK, Cass BN, Paredes D, Parsa S, Karp DS, Chaplin-Kramer R. 2022. Increasing crop field size does not consistently exacerbate insect pest problems. Proceedings of the National Academy of Sciences of the United States of America. 119:1–8. DOI: https://doi.org/10.1073/pnas.2208813119.
Rusch A, Caplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C, Woltz M, Bommarco R. 2016. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems and Environment. 221:198–204. DOI: https://doi.org/10.1016/j.agee.2016.01.039.
Santos AD Dos, Onody HC, Brandão CRF. 2019. Taxonomic contributions to the genus Charops Holmgren, 1859 (Hymenoptera: Ichneumonidae), with description of seven new species from Brazil. Zootaxa. 4619:45–76. DOI: https://doi.org/10.11646/zootaxa.4619.1.2.
Sarthou JP, Badoz A, Vaissière B, Chevallier A, Rusch A. 2014. Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agriculture, Ecosystems & Environment. 194:17–28. DOI: https://doi.org/10.1016/j.agee.2014.04.018.
Sartiami D, Dadang, Harahap IS, Kusumah YM, Anwar R. 2020. First record of fall armyworm (Spodoptera frugiperda) in Indonesia and its occurence in three provinces. IOP Conference Series: Earth and Environmental Science. 468:012021. DOI: https://doi.org/10.1088/1755-1315/468/1/012021.
Sisay B, Simiyu J, Mendesil E, Likhayo P, Ayalew G, Mohamed S, Subramanian S, Tefera T. 2019. Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism. Insects. 10:1–10. DOI: https://doi.org/10.3390/insects10070195.
Sudihardjo D, Samanhudi, Sholahuddin, Pujiasmanto B, Rahayu M, Setyawati A. 2023. Intensity attacks of Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae) on several corn varieties in Kediri, East Java, Indonesia. Biodiversitas. 24:6979–6987. DOI: https://doi.org/10.13057/biodiv/D241259.
Supartha IW, Susila IW, Sunari AAAAS, Mahaputra IGF, Yudha IKW, Wiradana PA. 2021. Damage characteristics and distribution patterns of invasive pest, Spodoptera frugiperda (J.E Smith) (Lepidoptera: Noctuidae) on maize crop in Bali, Indonesia. Biodiversitas. 22:3378–3389. DOI: https://doi.org/10.13057/biodiv/d220645.
Supeno B, Tarmizi, Haryanto H, Ernawati NML. 2021. Parasitoid of fall armyworm larvae, Spodoptera frugiperda (Lepidoptera: Noctuidae) on mize at Lombok Island. Proceeding International Conference on Science and Technology. 2:460–466.
Susanto A, Setiawati W, Udiarto BK, Kurniadie D. 2021. Toxicity and efficacy of selected insecticides for managing invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on maize in Indonesia. Research on Crops. 22:652–665. DOI: https://doi.org/10.31830/2348-7542.2021.114.
Susanto Agus, Setiawati W, Muharam A, Udiarto BK, Suganda T, Putri SNS. 2024. Fitness and survival of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) on maize in West Java, Indonesia. Sains Malaysiana. 53:3085–3095. DOI: https://doi.org/10.17576/jsm-2024-5309-14.
Syahidah T, Rizali A, Prasetyo LB, Pudjianto, Buchori D. 2020. Landscape composition alters parasitoid wasps but not their host diversity in tropical agricultural landscapes. Biodiversitas. 21:1702–1706. DOI: https://doi.org/10.13057/biodiv/d210452.
Syahidah T, Rizali A, Prasetyo LB, Pudjianto, Buchori D. 2021. Composition of tropical agricultural landscape alters the structure of host-parasitoid food webs. Heliyon. 7:e07625. DOI: https://doi.org/10.1016/j.heliyon.2021.e07625.
Tabuchi K, Taki H, Iwai H, Mizutani N, Nagasaka K, Moriya S, Sasaki R. 2014. Abundances of a bean bug and its natural enemy in seminatural and cultivated habitats in agricultural landscapes. Environmental Entomology. 43:312–319. DOI: https://doi.org/10.1603/EN13115.
Trisyono YA, Suputa S, Aryuwandari VEF, Hartaman M, Jumari J. 2019. Occurrence of heavy infestation by the fall armyworm Spodoptera frugiperda, a new alien invasive pest, in corn Lampung Indonesia. Jurnal Perlindungan Tanaman Indonesia. 23:156–160. DOI: https://doi.org/10.22146/jpti.46455.
Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S. 2007. Conservation biological control and enemy diversity on a landscape scale. Biological Control. 43:294–309. DOI: https://doi.org/10.1016/j.biocontrol.2007.08.006.
Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F, Gratton C, Hunt L, et al. 2016. When natural habitat fails to enhance biological pest control–Five hypotheses. Biological Conservation. 204:449–458. DOI: https://doi.org/10.1016/j.biocon.2016.10.001.
Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM. 2008. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology. 89:944–951. DOI: https://doi.org/10.1890/07-0455.1.
Ulina ES, Rizali A, Manuwoto S, Pudjianto, Buchori D. 2019. Does composition of tropical agricultural landscape affect parasitoid diversity and their host–parasitoid interactions? Agricultural and Forest Entomology. 21:318–325. DOI: https://doi.org/10.1111/AFE.12334.
Vebryanti A, Daud ID, Dungga NE. 2023. Damage caused by Spodoptera frugiperda J.E Smith on corn in climate zones in South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science. 1255:1–8. DOI: https://doi.org/10.1088/1755-1315/1255/1/012011.
Veres A, Petit S, Conord C, Lavigne C. 2013. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agriculture, Ecosystems & Environment. 166:110–117. DOI: https://doi.org/10.1016/j.agee.2011.05.027.
Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S. 2015. Modeling seasonal migration of fall armyworm moths. International Journal of Biometeorology. 60:255–267. DOI: https://doi.org/10.1007/S00484-015-1022-X.
Whitfield J. 1997. Subfamily Microgastrinae. In: Wharton R, Marsh P, Sharkey M (Eds.), Manual of the new world Genera of the family Braconidae (Hymenoptera). pp. 333–364. International Society of Hymenopterists.
Woltz JM, Isaacs R, Landis DA. 2012. Landscape structure and habitat management differentially influence insect natural enemies in an agricultural landscape. Agriculture, Ecosystems & Environment. 152:40–49. DOI: https://doi.org/10.1016/j.agee.2012.02.008.
Woltz JM, Landis DA. 2014. Coccinellid response to landscape composition and configuration. Agricultural and Forest Entomology. 16:341–349. DOI: https://doi.org/10.1111/AFE.12064.
Wu LH, Zhou C, Long GY, Yang X Bin, Wei ZY, Liao YJ, Yang H, et al. 2021. Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables. Journal of Integrative Agriculture. 20:755–763. DOI: https://doi.org/10.1016/S2095-3119(20)63476-1.
Wyckhuys KAG, O’Neil RJ. 2006. Population dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize. Crop Protection. 25:1180–1190. DOI: https://doi.org/10.1016/j.cropro.2006.03.003.
Zhang DD, Xiao YT, Xu PJ, Yang XM, Wu QL, Wu KM. 2021. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China. Journal of Integrative Agriculture. 20:783–791. DOI: https://doi.org/10.1016/S2095-3119(20)63392-5.
Zhang Y, Haan NL, Landis DA. 2020. Landscape composition and configuration have scale-dependent effects on agricultural pest suppression. Agriculture, Ecosystems & Environment. 302:107085. DOI: https://doi.org/10.1016/j.agee.2020.107085.
Zhao ZH, Hui C, He DH, Li BL. 2015. Effects of agricultural intensification on ability of natural enemies to control aphids. Scientific Reports. 5:1–7. DOI: https://doi.org/10.1038/srep08024.
Zhou C, Wang L, Price M, Li J, Meng Y, Yue BS. 2020. Genomic features of the fall armyworm (Spodoptera frugiperda) (J.E. Smith) yield insights into its defense system and flight capability. Entomological Research. 50:100–112. DOI: https://doi.org/10.1111/1748-5967.12413.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mihwan Sataral, Muhammad Iqbal Tawakkal, I Wayan Winasa, Hermanu Triwidodo, Akhmad Rizali, Damayanti Buchori
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).