Desain primer secara in silico dan optimasi PCR untuk deteksi gen penyandi ovary ecdysteroidogenic hormone (OEH) pada nyamuk Aedes aegypti yang terinfeksi Wolbachia

In silico primer design and PCR optimization for detection of the gene encoding ovary ecdysteroidogenic hormone (OEH) in Aedes aegypti mosquitoes infected with Wolbachia

Authors

  • Ni Putu Senshi Septiasari Fakultas Ilmu-ilmu Kesehatan, Universitas Bali Internasional, Jalan Seroja Gang Jeruk No. 9A Tonja, Denpasar 80111, Indonesia
  • Ni Made Sri Dwijastuti Fakultas Ilmu-ilmu Kesehatan, Universitas Bali Internasional, Jalan Seroja Gang Jeruk No. 9A Tonja, Denpasar 80111, Indonesia
  • Nyoman Sri Handayani Fakultas Kedokteran, Universitas Udayana, Jalan PB.Sudirman, Denpasar 80225, Indonesia
  • Putu Diah Darmayanti Fakultas Ilmu-ilmu Kesehatan, Universitas Bali Internasional, Jalan Seroja Gang Jeruk No. 9A Tonja, Denpasar 80111, Indonesia

DOI:

https://doi.org/10.5994/jei.22.1.9

Keywords:

annealing temperature, amplification, PCR, primer concentration

Abstract

Female Aedes aegypti (Linnaeus) mosquitoes bearing Wolbachia are reported to have behavioral changes during mating and blood-sucking. The ovary ecdysteroidogenic hormone (OEH) is a hormone released when female mosquitoes consume blood so that it influencing egg formation. Initial studies regarding the genetics of the A. aegypti mosquito carrying Wolbachia are very necessary to able to do this help control dengue vectors. The polymerase chain reaction (PCR) method is an appropriate method for genetic studies. Primer design is an initial and crucial stage in genetic studies because designing specific primers will determine the success of the PCR process. This research includes several stages of in silico primer design to design OEH gene primers and test the optimization of the in vitro designed primers. The in silico stage which involves primer design, primer BLAST, primer quality testing, and in silico PCR simulations. The designed primers were tested in vitro by performing PCR using various variations in primer concentration (0.2 µM and 0.4 µM) and annealing temperature (start from 45 oC to 60 oC). The results obtained in silico were two pairs of primers: primers OEH 8 and OEH 9. The results of the in silico test obtained a DNA product size of 264 bp for Primer OEH 8 and 236 bp for primer OEH 9, and the PCR efficiency was 95%. The results of the in vitro test showed only primer OEH 9 met the primer criteria according to the in silico test: primer concentration of 0.4 µM with an annealing temperature of 57 oC.

Downloads

Download data is not yet available.

References

Anam K, W Cahyadi, I Azmi, K Senjarini, R Oktarianti. 2021. Analisis hasil elektroforesis DNA dengan image processing menggunakan metode gaussian filter, Indonesian Journal of Electronics and Instrumentation Systems. 11:37–48. DOI: https://doi.org/10.22146/ijeis.58268.

Borah P. 2011. Primer designing for PCR. Science Vision. 11:134–136.

Buchori D, Mawan A, Nurhayati I, Aryati A, Kusnanto H, Hadi UK. 2022. Risk assessment on the release of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia. Insects. 13:924. DOI: https://doi.org/10.3390/insects13100924.

Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE. 1998. Identification of a steroidogenic neurohormone in female mosquitoes. Journal of Biological Chemistry. 273:3967–3971.

Crain PR, Mains JW, Suh E, Huang Y, Crowley PH, Dobson SL. 2011. Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement. BMC Evolutionary Biology. 11:290. DOI: https://doi.org/10.1186/1471-2148-11-290.

Deratih BP, Achyar A. 2021. Primer design and in silico PCR for detection Shigella sp. on refilled water samples. Serambi Biologi. 6:1–6.

Gulia-Nuss M, Elliot A, Brown MR, Strand MR. 2015. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti. Journal of Insect Physioogyl. 82:8–16. DOI: https://doi.org/10.1016/j.jinsphys.2015.08.001.

Irfandi A. 2018. Kajian pemanfaatan Wolbachia terhadap pengendalian DBD (studi literatur dan studi kasus pemanfaatan Wolbachia di Yogyakarta). Forum Ilmiah. 15:276–89.

Iturbe-Ormaetxe I, Walker T, O’Neill SL. 2011. Wolbachia and the biological control of mosquito-borne disease. EMBO Reports. 12:508–518. DOI: https://doi.org/10.1038/embor.2011.84.

Matthews BJ, McBride CS, DeGennaro M, Despo O, Vosshall LB. 2016. The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics. 17:32. DOI: https://doi.org/10.1186/s12864-015-2239-0.

McMeniman CJ, O’Neill SL. 2010. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Neglected Tropical Diseases. 13:748. DOI: https://doi.org/10.1371/journal.pntd.0000748.

McMeniman CJ, Lane R V., Cass BN, Fong AWC, Sidhu M, Wang YF. 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 323:141–144. DOI: https://doi.org/10.1126/science.1165326.

Parikesit, AA, Anugoro D, Putranto RA. 2017. Pemanfaatan bioinformatika di bidang pertanian dan kesehatan. Menara Perkebunan. 85:105–115. DOI: https://doi.org/10.22302/iribb.jur.mp.v85i2.237.

Pradnyaniti DG, Yowani S. 2013. Desain primer secara in silico untuk amplifikasi fragmen gen rpoB Mycobacterium tuberculosis dengan polymerase chain reaction (PCR). Jurnal Farmasi Udayana. 2:124–127.

Saraswati U, Supriyati E, Rahayu A, Rovik A, Kurniasari I, Hermantara R. 2023. Kajian aspek keamanan nyamuk Aedes aegypti Linnaeus ber-Wolbachia di Yogyakarta, Indonesia. Jurnal Entomologi Indonesia. 20:117–128. DOI: https://doi.org/10.5994/jei.20.2.117.

Sasmitha VL, Sanna Yustiantara P, Sagung Chandra Yowani. 2018. Desain DNA primer secara in silico sebagai pendeteksi mutasi gen gyrA Mycrobacterium tuberculosis untuk metode polymerase chain reaction. Cakra Kimia (Indonesian E-Journal of Applied Chemistry. 6:63–69.

Sasmito DEK, Kurniawan R, Muhimmah I. 2014. Karakteristik primer pada polymerase chain reaction (PCR) untuk sekuensing DNA: Mini Review. Seminar Nasional Informatika Medis (SNIMed). V:93–102.

Septiasari NPS. 2022. Optimasi PCR dengan penanda daerah D-loop DNA mitokondria untuk metode tes DNA. Indonesian Journal of Legal and Forensic Sciences. 12:76–83. DOI: https://doi.org/10.24843/IJLFS.2022.v12.i02.p03.

Setyawati R, Zubaidah S. 2021. Optimasi konsentrasi primer dan suhu annealing dalam mendeteksi gen leptin pada sapi peranakan ongole (PO) menggunakan polymerase chain reaction (PCR). Indonesian Journal of Laboratory. 4:36–40. DOI: https://doi.org/10.22146/ijl.v4i1.65550.

Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476:450–453. DOI: https://doi.org/10.1038/nature10355.

Werren JH, Baldo L, Clark ME. 2008. Wolbachia: Master manipulators of invertebrate biology. Nature Reviews Microbioogyl. 6:741–51. DOI: https://doi.org/10.1038/nrmicro1969.

Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF. 2015 Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti. PLoS Neglected Tropical Diseases. 9:e0003894. DOI: https://doi.org/10.1371/journal.pntd.0003894.

Zhou XF, Li ZX. 2016. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect. Scientific Reports. 6:39200. DOI: https://doi.org/10.1038/srep39200.

Published

2025-04-26

How to Cite

Septiasari, N. P. S., Dwijastuti, N. M. S., Handayani, N. S., & Darmayanti, P. D. (2025). Desain primer secara in silico dan optimasi PCR untuk deteksi gen penyandi ovary ecdysteroidogenic hormone (OEH) pada nyamuk Aedes aegypti yang terinfeksi Wolbachia: In silico primer design and PCR optimization for detection of the gene encoding ovary ecdysteroidogenic hormone (OEH) in Aedes aegypti mosquitoes infected with Wolbachia. Jurnal Entomologi Indonesia, 22(1), 9–16. https://doi.org/10.5994/jei.22.1.9