Desain primer secara in silico dan optimasi PCR untuk deteksi gen penyandi ovary ecdysteroidogenic hormone (OEH) pada nyamuk Aedes aegypti yang terinfeksi Wolbachia
In silico primer design and PCR optimization for detection of the gene encoding ovary ecdysteroidogenic hormone (OEH) in Aedes aegypti mosquitoes infected with Wolbachia
DOI:
https://doi.org/10.5994/jei.22.1.9Keywords:
annealing temperature, amplification, PCR, primer concentrationAbstract
Female Aedes aegypti (Linnaeus) mosquitoes bearing Wolbachia are reported to have behavioral changes during mating and blood-sucking. The ovary ecdysteroidogenic hormone (OEH) is a hormone released when female mosquitoes consume blood so that it influencing egg formation. Initial studies regarding the genetics of the A. aegypti mosquito carrying Wolbachia are very necessary to able to do this help control dengue vectors. The polymerase chain reaction (PCR) method is an appropriate method for genetic studies. Primer design is an initial and crucial stage in genetic studies because designing specific primers will determine the success of the PCR process. This research includes several stages of in silico primer design to design OEH gene primers and test the optimization of the in vitro designed primers. The in silico stage which involves primer design, primer BLAST, primer quality testing, and in silico PCR simulations. The designed primers were tested in vitro by performing PCR using various variations in primer concentration (0.2 µM and 0.4 µM) and annealing temperature (start from 45 oC to 60 oC). The results obtained in silico were two pairs of primers: primers OEH 8 and OEH 9. The results of the in silico test obtained a DNA product size of 264 bp for Primer OEH 8 and 236 bp for primer OEH 9, and the PCR efficiency was 95%. The results of the in vitro test showed only primer OEH 9 met the primer criteria according to the in silico test: primer concentration of 0.4 µM with an annealing temperature of 57 oC.
Downloads
References
Anam K, W Cahyadi, I Azmi, K Senjarini, R Oktarianti. 2021. Analisis hasil elektroforesis DNA dengan image processing menggunakan metode gaussian filter, Indonesian Journal of Electronics and Instrumentation Systems. 11:37–48. DOI: https://doi.org/10.22146/ijeis.58268.
Borah P. 2011. Primer designing for PCR. Science Vision. 11:134–136.
Buchori D, Mawan A, Nurhayati I, Aryati A, Kusnanto H, Hadi UK. 2022. Risk assessment on the release of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia. Insects. 13:924. DOI: https://doi.org/10.3390/insects13100924.
Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE. 1998. Identification of a steroidogenic neurohormone in female mosquitoes. Journal of Biological Chemistry. 273:3967–3971.
Crain PR, Mains JW, Suh E, Huang Y, Crowley PH, Dobson SL. 2011. Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement. BMC Evolutionary Biology. 11:290. DOI: https://doi.org/10.1186/1471-2148-11-290.
Deratih BP, Achyar A. 2021. Primer design and in silico PCR for detection Shigella sp. on refilled water samples. Serambi Biologi. 6:1–6.
Gulia-Nuss M, Elliot A, Brown MR, Strand MR. 2015. Multiple factors contribute to anautogenous reproduction by the mosquito Aedes aegypti. Journal of Insect Physioogyl. 82:8–16. DOI: https://doi.org/10.1016/j.jinsphys.2015.08.001.
Irfandi A. 2018. Kajian pemanfaatan Wolbachia terhadap pengendalian DBD (studi literatur dan studi kasus pemanfaatan Wolbachia di Yogyakarta). Forum Ilmiah. 15:276–89.
Iturbe-Ormaetxe I, Walker T, O’Neill SL. 2011. Wolbachia and the biological control of mosquito-borne disease. EMBO Reports. 12:508–518. DOI: https://doi.org/10.1038/embor.2011.84.
Matthews BJ, McBride CS, DeGennaro M, Despo O, Vosshall LB. 2016. The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics. 17:32. DOI: https://doi.org/10.1186/s12864-015-2239-0.
McMeniman CJ, O’Neill SL. 2010. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Neglected Tropical Diseases. 13:748. DOI: https://doi.org/10.1371/journal.pntd.0000748.
McMeniman CJ, Lane R V., Cass BN, Fong AWC, Sidhu M, Wang YF. 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 323:141–144. DOI: https://doi.org/10.1126/science.1165326.
Parikesit, AA, Anugoro D, Putranto RA. 2017. Pemanfaatan bioinformatika di bidang pertanian dan kesehatan. Menara Perkebunan. 85:105–115. DOI: https://doi.org/10.22302/iribb.jur.mp.v85i2.237.
Pradnyaniti DG, Yowani S. 2013. Desain primer secara in silico untuk amplifikasi fragmen gen rpoB Mycobacterium tuberculosis dengan polymerase chain reaction (PCR). Jurnal Farmasi Udayana. 2:124–127.
Saraswati U, Supriyati E, Rahayu A, Rovik A, Kurniasari I, Hermantara R. 2023. Kajian aspek keamanan nyamuk Aedes aegypti Linnaeus ber-Wolbachia di Yogyakarta, Indonesia. Jurnal Entomologi Indonesia. 20:117–128. DOI: https://doi.org/10.5994/jei.20.2.117.
Sasmitha VL, Sanna Yustiantara P, Sagung Chandra Yowani. 2018. Desain DNA primer secara in silico sebagai pendeteksi mutasi gen gyrA Mycrobacterium tuberculosis untuk metode polymerase chain reaction. Cakra Kimia (Indonesian E-Journal of Applied Chemistry. 6:63–69.
Sasmito DEK, Kurniawan R, Muhimmah I. 2014. Karakteristik primer pada polymerase chain reaction (PCR) untuk sekuensing DNA: Mini Review. Seminar Nasional Informatika Medis (SNIMed). V:93–102.
Septiasari NPS. 2022. Optimasi PCR dengan penanda daerah D-loop DNA mitokondria untuk metode tes DNA. Indonesian Journal of Legal and Forensic Sciences. 12:76–83. DOI: https://doi.org/10.24843/IJLFS.2022.v12.i02.p03.
Setyawati R, Zubaidah S. 2021. Optimasi konsentrasi primer dan suhu annealing dalam mendeteksi gen leptin pada sapi peranakan ongole (PO) menggunakan polymerase chain reaction (PCR). Indonesian Journal of Laboratory. 4:36–40. DOI: https://doi.org/10.22146/ijl.v4i1.65550.
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476:450–453. DOI: https://doi.org/10.1038/nature10355.
Werren JH, Baldo L, Clark ME. 2008. Wolbachia: Master manipulators of invertebrate biology. Nature Reviews Microbioogyl. 6:741–51. DOI: https://doi.org/10.1038/nrmicro1969.
Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF. 2015 Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti. PLoS Neglected Tropical Diseases. 9:e0003894. DOI: https://doi.org/10.1371/journal.pntd.0003894.
Zhou XF, Li ZX. 2016. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect. Scientific Reports. 6:39200. DOI: https://doi.org/10.1038/srep39200.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Putu Senshi Septiasari, Ni Made Sri Dwijastuti, Nyoman Sri Handayani, Putu Diah Darmayanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).