Toksisitas dan dampak empat insektisida sintetik terhadap sintasan dan perilaku makan lebah tanpa sengat Tetragonula laeviceps Smith (Hymenoptera: Apidae: Meliponinae)
Toxicity and impact of four synthetic insecticides on survival and feeding behavior of stingless bees Tetragonula laeviceps Smith (Hymenoptera: Apidae: Meliponinae)
DOI:
https://doi.org/10.5994/jei.22.3.197Keywords:
dermal exposure, feeding capability, pollinator, olfactory, oral exposureAbstract
Tetragonula laeviceps Smith are widely found and cultivated in Indonesia. They play a crucial role in providing ecological services as pollinators of plants. However, there has been a global concern of bees’ population decline, which may be attributed to the intensive use of insecticides. This study aimed to analyze the toxicity level of several insecticide active ingredients and the effects of insecticide exposure on the physiology of T. laeviceps. Four insecticides active ingredients, carbosulfan, clothianidin, diafenthiuron, and tetraniliprole were tested for toxicity against T. laeviceps through dermal and oral exposures at five concentration levels. Bee preference testing was conducted through olfactory tests using a Y-tube olfactometer. Results showed that insecticide exposure affected the visitation length of T. laeviceps (P = 0.006), but not its visitation frequency (P = 0.286). Carbosulfan and clothianidin were toxic to T. laeviceps, both dermally (LC50 31.28 and 0.09 ppm, respectively) and orally (LC50 28.51 and 0.41 ppm, respectively). Meanwhile, diafentiuron and tetraniliprole were more harmful to bees during dermal exposure (LC50 7,882 and 148.81 ppm, respectively) compared to oral exposure (LC50 53,983 and 5,240 ppm, respectively). The toxicity levels of the insecticides carbosulfan and clothianidin are classified as highly toxic and harmful, while diafentiuron and tetraniliprole are not harmful to T. laeviceps bees. In addition, the capability of bees to consume feed was also significantly decreased due to exposure to carbosulfan (10,000 and 3,000 ppm) and clothianidin (300; 30; 3; 0,3; and 0,03 ppm) insecticides. Information of the toxicity levels and effects of various insecticides on bees may contribute to the development of insecticide management to keep the survival of bees in agricultural areas.
Downloads
References
Atmowidi T, Prawasti TS, Rianti P, Prasojo FA, Pradipta NB. 2022. Stingless bees pollination increases fruit formation of strawberry (Fragaria x annanassa Duch) and melon (Cucumis melo L.). Tropical Life Sciences Research. 33:43–54. DOI: https://doi.org/10.21315/tlsr2022.33.1.3.
Aurell D, Bruckner S, Wilson M, Steinhauer N, Williams GR. 2023. A national survey of managed honey bee colony losses in the USA: Results from the Bee Informed Partnership for 2020–21 and 2021–22. Journal of Apicultural Research. 63:1–14. DOI: https://doi.org/10.1080/00218839.2023.2264601.
A’yunin Q, Rauf A, Harahap IS. 2019. Foraging behaviour and pollination efficiency of Heterotrigona itama (Cockerell) and Tetragonula laeviceps (Smith) (Hymenoptera: Apidae) on chayote. Jurnal Ilmu Pertanian Indonesia. 24:247–257. DOI: https://doi.org/10.18343/jipi.24.3.247.
Bekić B, Jeločnik M, Subić J. 2014. Honey bee colony collapse disorder (Apis mellifera L.)-possible causes. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development. 14:13–18.
Bruckner S, Wilson M, Aurell D, Rennich K, Engelsdorp DV, Steinhauer N, Williams GR. 2023. A national survey of managed honey bee colony losses in the USA: results from the Bee Informed Partnership for 2017–18, 2018–19, and 2019–20. Journal of Apicultural Research. 62:429–443. DOI: https://doi.org/10.1080/00218839.2022.2158586.
Buchori D, Rizali A, Priawandiputra W, Raffiudin R, Sartiami D, Pujiastuti Y, Jauharlina, Pradana MG, Meilin A, Leatemia JA, et al. 2022. Beekeeping and managed bee diversity in Indonesia: Perspective and preference of beekeepers. Diversity. 14:1–14. DOI: https://doi.org/10.3390/d14010052.
Buren NWMV, Mariën AGH, Velthuis HHW. 1992. The role of trophallaxis in the distribution of Perizin in a honeybee colony with regard to the control of the Varroa mite. Entomologia Experimentalis et Applicata. 2:157–164. DOI: https://doi.org/10.1111/j.1570-7458.1992.tb01639.x.
Chuttong B, Panyaraksa L, Tiyayon C, Kumpoun W, Chantrasri P, Lertlakkanawat P, Jung C, Burgett M. 2022. Foraging behavior and pollination efficiency of honey bees (Apis mellifera L.) and stingless bees (Tetragonula laeviceps species complex) on mango (Mangifera indica L., cv. Nam Dokmai) in Northern Thailand. Journal of Ecology and Environment. 15:1–7. DOI: https://doi.org/10.5141/jee.22.012.
[EPA] Environmental Protection Agency. 2014. Guidance for Assessing Pesticide Risks to Bees. Washington DC: The United States Environmental Protection Agency.
[EPA] Environmental Protection Agency. 2020. EPA Proposes Registration of Tetraniliprole, a New Insecticide Active Ingredient. United States: EPA. https://www.epa.gov/pesticides/epa-proposes-registration-tetraniliprole-new-insecticide-active-ingredient. [diakses 24 September 2024].
Felton JC, Oomen PA, Stevenson JH. 1986. Toxicity and hazard of pesticides to honeybees: harmonization of test methods. Bee World. 3:114-124. DOI: https://doi.org/10.1080/0005772X.1986.11098883.
Gullan PJ, Cranston PS. 2014. The Insects: An Outline of Entomology-Fifth Edition. Chichester: Wiley Blackwell.
Hasanah IR, Mubin N, Sartiami D, Priawandiputra W, Dadang. 2024. The toxicity test of synthetic insecticides on Tetragonula laeviceps (Apidae: Meliponini). Hayati. 31: 271–283. DOI: https://doi.org/10.4308/hjb.31.2.271-283.
Insolia L, Molinari R, Rogers SR, Williams GR, Chiaromonte F, Calovi M. 2022. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Scientific Reports. 12:1–13. DOI: https://doi.org/10.1038/s41598-022-24946-4.
[IRAC] Insecticide Resistance Action Committee. 2024. IRAC Mode of Action Classification Scheme. https://irac-online.org/documents/moa-classification/. [diakses 24 September 2024].
Krömer T, Kessler M, Lohaus G, Lebuhn ANS. 2008. Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biology. 4:502–511. DOI: https://doi.org/10.1111/j.1438-8677.2008.00058.x.
Kundoo AA, Dar SA, Mushtaq M, Bashir Z, Dar MS, Gul S, Ali MT, Gulzar S. 2018. Role of neonicotinoids in insect pest management: a review. Journal of Entomology and Zoology Studies. 6:333–339.
Li Y, Zhong S, Qin Y, Zhang S, Gao Z, Dang Z, Pan W. 2014. Identification of plant chemicals attracting and repelling whiteflies. Arthropod-Plant Interactions. 3:183–190. DOI: https://doi.org/10.1007/s11829-014-9302-7.
Masrianih M, Dhafir F, Trianto M. 2022. Pollen collected by stingless bees Tetragonula laeviceps (Smith, 1857) (Hymenoptera: Apidae: Meliponini) from Central Sulawesi. Jurnal Biologi Tropis. 22:851–856. DOI: https://doi.org/10.29303/jbt.v22i3.3885.
Minnesota Department of Agriculture. 2023. Tetraniliprole. United States: Minnesota Department of Agriculture. https://www.mda.state.mn.us/sites/default/files/docs/
2023-10/tetraniliprolereview.pdf. [diakses 24 September 2024].
Mubin N, Kusmita AO, Rohmah A, Nurmansyah A. 2022. Economic values of pollination service of open pollination with the help of Tetragonula laeviceps (Hymenoptera: Apidae: Meliponini) on tomato and chili. Biodiversitas. 23:2544–2552. DOI: https://doi.org/10.13057/biodiv/d230535.
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Engelsdorp DV, Pettis JS. 2010. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE. 3:1–19. DOI: https://doi.org/10.1371/journal.pone.0009754.
Mustard JA, Gott A, Scott J, Chavarria NL, Wright GA. 2020. Honeybees fail to discriminate floral scents in a complex learning task after consuming a neonicotinoid pesticide. Journal of Experimental Biology. 5:1–8. DOI: https://doi.org/10.1242/jeb.217174.
Muth F, Leonard AS. 2019. A neonicotinoid pesticide impairs foraging, but not learning, in free-fying bumblebees. Scientific Reports. 9:1–13. doi: https://doi.org/10.1038/s41598-019-39701-5.
Naggar YA, Estrella-Maldonado H, Paxton RJ, Solís T, Quezada-Euán JJG. 2022. The insecticide imidacloprid decreases Nannotrigona stingless bee survival and food consumption and modulates the expression of detoxification and immune-related genes. Insects. 13:1–14. DOI: https://doi.org/10.3390/insects13110972.
Nicolson SW, Thornburg RW. 2007. Nectar chemistry. Di dalam: Nicolson SW, Nepi M, Pacini E (Eds). Nectaries and Nectar. hlm 215–263. New York: Springer. DOI: https://doi.org/10.1007/978-1-4020-5937-7_5.
Nicolson SW. 2011. Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two. African Zoology. 2:197–204. doi: http://dx.doi.org/10.3377/004.046.0201.
Paoli M, Giurfa M. 2024. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees?. European Journal of Neuroscience. 60:5927–5948. DOI: https://doi.org/10.1111/ejn.16536.
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution. 25:345–353. DOI: https://doi.org/10.1016/j.tree.2010.01.007.
Putra DP, Badal B. 2018. Efektivitas pollinasi Apis cerana Fabr. dan Trigona laeviceps dalam meningkatkan hasil tanaman cabai (Capsicum annuum L.). Di dalam: Afza A, Susanti S, Rizki (Ed.), Peran Pendidikan dan Sains dalam Mewujudkan Sumber Daya Manusia yang Kompetitif. Seminar Nasional Biologi Edukasi; (Padang, 7 April 2018). hlm. 348–358. Padang: Program Studi Pendidikan Biologi STKIP PGRI Sumatera Barat.
R Core Team. 2024. R: a language and environment for statistical computing. Available at: http://www.R project.org/. [diakses 2 Februari 2025].
Rahmani AS, Putra RE, Wawan Gunawan. 2020. Efisiensi penyerbukan oleh penyerbuk liar dan lebah Tetragonula laeviceps pada bunga ranti dan kacang panjang. Jurnal Agronomi Indonesia. 48:283–291. DOI: https://doi.org/10.24831/jai.v48i3.32607.
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, et al.. 2015. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environmental Science and Pollution Research. 22:5–34. DOI: https://doi.org/10.1007/s11356-014-3470-y.
Stanley DA, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE. 2015. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature. 528:548–550. DOI: https://doi.org/10.1038/nature16167.
Stanley J, Preetha G, Chandrasekaran S, Kuttalam S. 2009. Honey bees of the cardamom ecosystem and the selective toxicity of diafenthiuron to four different bee species in the laboratory. Journal of Apicultural Research and Bee World. 48:91–98. DOI: https://doi.org/10.3896/IBRA.1.48.2.02.
Stanley J, Chandrasekaran S, Preetha G, Kuttalam S. 2010. Toxicity of diafenthiuron to honey bees in laboratory, semi-field and field conditions. Pest Management Science. 66:505–10. DOI: https://doi.org/10.1002/ps.1900.
Syahputra E. 2001. Bioaktivitas sediaan Dysoxylum acutangulum Miq. (Meliaceae) terhadap Crocidolomia binotalis Zeller (Lepidoptera: Pyralidae). Tesis. Bogor: Institut Pertanian Bogor.
Tang J, Ma C, Shi W, Chen X, Liu Z, Wang H, Chen C. 2020. A national survey of managed honey bee colony winter losses (Apis mellifera) in China (2013-2017). Diversity. 12:1–14. DOI: https://doi.org/10.3390/d12090318.
Theisen-Jones H, Bienefeld K. 2016. The Asian honey ee (Apis cerana) is significantly in decline. Bee World. 93:90–97. DOI: https://doi.org/10.1080/0005772X.2017.1284973.
Tomizawa M, Casida JE. 2005. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annual Review of Pharmacology and Toxicology. 45:247–68. DOI: https://doi.org/10.1146/annurev.pharmtox.45.120403.095930.
Vanbergen AJ, Garratt MP, Vanbergen AJ, Baude M, Biesmeijer JC, Britton NF, Brown MJF, Brown M, Bryden J, Budge GE, et al. 2013. Threats to an ecosystem service: Pressures on pollinators. Frontiers in Ecology and the Environment. 11:251–259. doi: https://doi.org/10.1890/120126.
Witt T, Jürgens A, Gottsberger G. 2013. Nectar sugar composition of European Caryophylloideae (Caryophyllaceae) in relation to flower length, pollination biology and phylogeny. Journal of Evolutionary Biology. 10:2244–2259. DOI: https://doi.org/10.1111/jeb.122 24.
Zidni I, Mubin N, Nurmansyah A. 2021. Quantity and quality of cucumber fruit resulted from various methods of pollination. Jurnal Ilmu-Ilmu Pertanian Indonesia. 23:78–83. DOI: https://doi.org/10.31186/jipi.23.2.78-83.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bela Hasna Audia, Damayanti Buchori, Dadang, Rika Raffiudin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

