Semiokimia dan volatil lain pada Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae) yang memangsa Aphis gossypii Glover (Hemiptera: Aphididae) pada tanaman cabai
Semiochemicals and other volatiles on Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae) that prey on Aphis gossypii Glover (Hemiptera: Aphididae) on chili plants
DOI:
https://doi.org/10.5994/jei.21.2.140Keywords:
apids, limonene, methyl isovalerate, pheromonesAbstract
Cheilomenes sexmaculata (Fabricius) is a potential natural enemy of aphids. Various aspects of the ecology and biology of this predator have been studied; however, there is still limited information on its physiology, particularly regarding pheromones and other semivolatiles. Naturally, intraspecific and interspecific interactions of C. sexmaculata involve a variety of semiochemicals. The information on the semiochemicals of C. sexmaculata, particularly its sex pheromones, footprints, defense mechanisms, aggregation, and other semivolatile characteristics, is still limited in Indonesia. This research was aimed to identify the semiochemical produced by the female of C. sexmaculata. The volatile compounds emitted by C. sexmaculata were captured using the headspace solid-phase micro extraction (SPME) method. The identification and quantification of each volatile compound were analyzed using gas chromatography-mass spectrometry (GC-MS). A total of 47 volatile compounds was identified among the semivolatiles. The identified volatiles comprise 47 compounds, mainly from the hydrocarbon compunds. Methyl isovalerate was the compound with the highest proportion, namely 31.43%. Several compounds identified were known to be components of the C. sexmaculata pheromone, namely methyl isovalerate, limonene, undecane, dodecane, and eicosane. These compounds were reported as components of sex pheromones, aggregation, and alarm. The limonene identified in this experiment was also previously reported in several Coccinelliade as a component of aggregation pheromone.
Downloads
References
Alhmedi A, Haubruge E, Francis F. 2010. Identification of limonene as a potential kairomone of the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology. 107:541–548. DOI: https://doi.org/10.14411/eje.2010.062.
Brown AE, Riddick EW, Aldrich JR, Holmes WE. 2006. Identification of (−)-β-Caryophyllene as a gender-specific terpene produced by the multicolored asian lady beetle. Journal of Chemical Ecology. 32:2489–2499. DOI: https://doi.org/10.1007/s10886-006-9158-0.
Daloze D, Braekman JC, Pasteels JM. 1994. Ladybird defence alkaloids: structural, chemotaxonomic and biosynthetic aspects (Coleoptera: Coccinellidae). Chemoecology. 5:173–183. DOI: https://doi.org/10.1007/BF01240602.
Durieux D, Fischer C, Brostaux Y, Sloggett JJ, Deneubourg JL, Vandereycken A, Joie E, Wathelet JP, Lognay G, Haubruge E, et al. 2012. Role of long-chain hydrocarbons in the aggregation behaviour of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Journal of Insect Physiology. 58:801–807. DOI: https://doi.org/10.1016/j.jinsphys.2012.03.006.
Efendi S. 2023. Rekayasa tanaman cabai dengan refugia dan tanaman pinggir sebagai strategi meningkatkan keanekaragaman dan mempercepat kehadiran Coccinellidae predator. AGRIKA: Jurnal Ilmu-ilmu Pertanian.17:232–247. DOI: https://doi.org/10.31328/ja.v17i2.4968.
Efendi S, Yaherwandi, Nelly N. 2017. Biologi dan statistik demografi Menochilus sexmaculatus fabricius (Coleoptera: Coccinellidae) predator Aphis gossypii Glover (Homoptera: Aphididae). Floratek. 12:75–89. DOI: https://doi.org/10.22146/jpti.28409.
Fassotte B, Fischer C, Durieux D, Lognay G, Haubruge E, Francis F, Verheggen FJ. 2014. First evidence of a volatile sex pheromone in lady beetles. PLoS One. 9:1–16. DOI: https://doi.org/10.1371/journal.pone.0115011.
Fletcher B, Bellas T. 1988. CRC Handbook of Natural Pesticides: Pheromones Part B. Ed ke-4. Boca Raton: Cambridge University Press. Francke W, Schulz S. 1999. Pheromones. In: Barton SD, Nakanishi K, Meth-Cohn O (Eds.), Comprehensive Natural Products Chemistry. pp. 197–261. DOI: https://doi.org/10.1016/B978-0-08-091283-7.00052-7.
Grant GG, Slessor KN, Liu W, Abou-Zaid MM. 2003 (Z,Z)-6,9-heneicosadien-11-one, labile sex pheromone of the whitemarked tussock moth, Orgyia leucostigma. Journal of Chemical Ecology. 29:589–601. DOI: https://doi.org/10.1023/A:1022802821338.
Hemptinne J, Dixon AF. 2000. Defence, oviposition and sex: semiochemical parsimony in two species of ladybird beetles (Coleoptera: Coccinellidae)? A short review. European Journal of Entomology. 97:443–447. DOI: https://doi.org/10.14411/eje.2000.068.
Hemptinne JL, Lognay G, Doumbia M, Dixon AFG. 2001. Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology. 11:43–47. DOI: https://doi.org/10.1007/PL00001831.
Jackson BD, Morgan ED. 1993. Insect chemical communication: Pheromones and exocrine glands of ants. Chemoecology. 4:125–144. DOI: https://doi.org/10.1007/BF01256548.
Jirošová A, Modlinger R, Hradecký J, Ramakrishnan R, Beránková K, Kandasamy D. 2022. Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle, Ips typographus to its aggregation pheromone in field traps. Front. Microbiology. 13:1–11. DOI: https://doi.org/10.3389/fmicb.2022.980251.
Kemp EA, Cottrell TE. 2015. Effect of lures and colors on capture of lady beetles (Coleoptera: Coccinellidae) in tedders pyramidal traps. Environmental Entomology. 44:1395–1406. DOI: https://doi.org/10.1093/ee/nvv108.
Kindlmann P, Dixon AFG. 1993. Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. European Journal of Entomology 90:443–450.
Klewer N, Růžička Z, Schulz S. 2007. (Z)-Pentacos-12-ene, an oviposition-deterring pheromone of Cheilomenes sexmaculata. Journal of Chemical Ecology. 33:2167–2170. DOI: https://doi.org/10.1007/s10886-007-9372-4.
Laurent P, Braekman J-C, Daloze D. 2004. Insect chemical defense. Topics in Current Chemistry. 240:167–229. DOI: https://doi.org/10.1007/b98317.
Laurent P, Braekman JC, Daloze D, Pasteels JM. 2002a. In vitro production of adaline and coccinelline, two defensive alkaloids from ladybird beetles (Coleoptera: Coccinellidae). Insect Biochemistry and Insect Molecular Biology. 32:1017–1023. DOI: https://doi. org/10.1016/S0965-1748(02)00038-3.
Laurent P, Braekman JC, Daloze D, Pasteels JM. 2002b. Chilocorine D, a novel heptacyclic alkaloid from a coccinellid beetle (Chilocorus renipustulatus). Tetrahedron Letters. 43:7465–7467. DOI: https://doi.org/10.1016/S0040-4039(02)01794-X.
Lebrun B, Braekman JC, Daloze D, Pasteels JM. 1997. 2-Dehydrococcinelline, a new defensive alkaloid from the ladybird beetle Anatis ocellata (Coccinellidae). Journal of Natural Products. 60:1148–1149. DOI: https://doi.org/10.1021/np9702695.
Magro A, Ducamp C, Ramon-Portugal F, Lecompte E, Crouau-Roy B, Dixon AFG, Hemptinne JL. 2010. Oviposition deterring infochemicals in ladybirds: The role of phylogeny. Evolutionary Ecology. 24:251–271. DOI: https://doi.org/10.1007/s10682-009-9304-6.
Magro A, Téné JN, Bastin N, Dixon AFG, Hemptinne JL. 2007. Assessment of patch quality by ladybirds: Relative response to conspecific and heterospecific larval tracks a consequence of habitat similarity? Chemoecology. 17:37–45. DOI: https://doi.org/10.1007/s00049-006-0357-5.
Mbaluto CM, Ayelo PM, Duffy AG, Erdei AL, Tallon AK, Xia S, Caballero-Vidal G, Spitaler U, Szelényi MO, Duarte GA, et al. 2020. Insect chemical ecology: chemically mediated interactions and novel applications in agriculture. Arthropod Plant Interactions 14:671–684. DOI: https://doi.org/10.1007/s11829-020-09791-4.
Meinwald J, Boriack C, Schneider D, Boppre M, Wood W, Eisner T. 1974. Volatile ketones in the hair pencil secretion of danaid butterflies (Amauris and Danaus). Experientia. 32:721–723. DOI: https://doi.org/10.1007/BF01924148.
Michaud JP. 2002. Invasion of the Florida citrus ecosystem by Harmonia axyridis (Coleoptera: Coccinellidae) and asymmetric competition with a native species, Cycloneda sanguinea. Environmental Entomology. 31:827–835. DOI: https://doi.org/10.1603/0046-225X-31.5.827.
Minaeimoghadam M, Askarianzadeh A, Imani S, Shojaei M, Larijani K, Abbasipour H. 2017. Identification of chemical compounds of the pheromone in different ages of female adults of the clearwing moth, Paranthrene diaphana Dalla Torre & Strand. Arch. Phytopathology and Plant Protection. 50:1019–1033. DOI: https://doi.org/10.1080/03235408.2017.1411174.
Mishra G, Singh N, Shahid M. 2013. The effects of three sympatric ladybird species on oviposition by Menochilus sexmaculatus (Coleoptera: Coccinellidae). Chemoecology. 23:103–111. DOI: https://doi.org/10.1007/s00049-012-0124-8.
Naoki M, Ritsuo N, Yasumasa K, Tsuyoshi F, Kazuyoshi K. 1995. Chemical ecology of astigmatid mites XLI. Undecane: The sex pheromone of the acarid mite Caloglyphus rodriguezi Samsinák (Acarina: Acaridae). Applied Entomology and Zoology. 30:415–423. DOI: https://doi.org/10.1303/aez.30.415.
Omkar, Pervez A. 2016. Ladybird beetles. In: Omkar (Ed.), Ecofriendly Pest Management for Food Security. Elsevier Inc. pp. 281–310. DOI: https://doi.org/10.1016/B978-0-12-803265-7.00009-9.
Pareja M, Moraes MCB, Clark SJ, Birkett MA, Powell W. 2007. Response of the aphid parasitoid Aphidius funebris to volatiles from undamaged and aphid-infested Centaurea nigra. Journal of Chemical Ecology. 33:695–710. DOI: https://doi.org/10.1007/s10886-007-9260-y.
Pattanayak R, Mishra G, Chanotiya CS, Rout PK, Mohanty CS, Omkar. 2015. Semiochemical profile of four aphidophagous Indian Coccinellidae (Coleoptera). Canadian Entomologist. 148:171–186. DOI: https://doi.org/10.4039/tce.2015.45.
Pattanayak R, Mishra G, Omkar, Chanotiya C, Rout P, Mohanty C. 2014. Does the volatile hydrocarbon profile differ between the sexes: a case study on five aphidophagous ladybirds. Insect Biochemistry and Physiology. 87:105–125. DOI: https://doi.org/10.1002/arch.21184.
Pickett JA, Wadhams LJ, Woodcock CM, Hardie J. 1992. The chemical ecology of aphids. Annual Review of Entomology. 37:67–90. DOI: https://doi.org/10.1146/annurev.en.37.010192.000435.
Provost E, Blight O, Tirard A, Renucci M. 2008. Hydrocarbons and insects’ social physiology. In: Maes RP (Ed.), Insect Physiology: New Research. pp. 19–72. New York: Nova Science Publishers.
Reddy GVP, Guerrero A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science. 9:253–261. DOI: https://doi.org/10.1016/j.tplants.2004.03.009.
Renou M, Descoins C, Priesner E, Gallois M, Lettere M. 1981. A study of the sex pheromone of the leek moth, Acrolepiopsis assectella (Lepidoptera: Acrolepiidae). Entomologia Experimentalis et Applicata. 29:198–208. DOI: https://doi.org/10.1111/j.1570-7458.1981.tb03059.x.
Růžička Z. 2003. Perception for oviposition-deterring larval tracks in aphidophagous coccinellids Cycloneda limbifer and Ceratomegilla undecimnotata (Coleoptera: Coccinellidae). European Journal of Entomology. 100:345–350. DOI: https://doi.org/10.14411/eje.2003.055.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Siska Efendi, Dadang, I Wayan Winasa, Ali Nurmansyah
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).