Patogenesitas blastospora dan konidia Lecanicillium lecanii Zare & Gams terhadap Helopeltis bradyi Waterhouse (Hemiptera: Miridae)

Pathogenicity of blastospores and conidia of Lecanicillium lecanii Zare & Gams on Helopeltis bradyi Waterhouse (Hemiptera: Miridae)

Authors

  • Ahmad Alwi Azhari Departemen Proteksi Tanaman, Fakultas Pertanian, IPB University, Indonesia
  • Rully Anwar Departemen Proteksi Tanaman, Fakultas Pertanian, IPB University, Indonesia
  • Dewi Sartiami Departemen Proteksi Tanaman, Fakultas Pertanian, IPB University, Indonesia
  • Samsudin Samsudin Badan Riset dan Inovasi Nasional, Pusat Riset Hortikultura dan Perkebunan, Indonesia

DOI:

https://doi.org/10.5994/jei.21.2.105

Keywords:

feeding ability, LC50, LT50, reproduction, tea plantations

Abstract

Helopeltis bradyi, merupakan salah satu hama perkebunan teh yang menyebabkan kerusakan hingga penurunan hasil produksi tanaman. Cendawan Lecanicillium lecanii sebagai musuh alami merupakan pengendalian alternatif yang telah diteliti untuk menekan perkembangan dan populasi H. bradyi. Penelitian bertujuan mengetahui patogenesitas blastospora dan konidia terhadap mortalitas, serta dampaknya terhadap kemampuan makan dan reproduksi H. bradyi. Penelitian menggunakan rancangan acak lengkap dengan sepuluh perlakuan dan lima ulangan, termasuk kontrol positif (insektisida deltametrin), kontrol negatif (akuades), serta konsentrasi blastospora (2,45 × 106 hingga 2,45 × 109 blastospora/ml) dan konidia (2,78 × 106 hingga 2,78 × 109 konidia/ml) L. lecanii. Hasil penelitian menunjukkan bahwa L. lecanii dengan konsentrasi 2,78 × 109 konidia/ml menyebabkan kematian H. bradyi sebesar 86% dan rata-rata 223,89 tusukan pada 7 hari setelah aplikasi. LC50 dan LT50 konidia L. lecanii lebih rendah, yaitu 6,62 × 105 konidia/ml dan 4,44 hari dibandingkan dengan blastospora, yaitu 2,20 × 107 blastospora/ml dan 5,37 hari. Aplikasi L. lecanii dengan konsentrasi 2,45 × 109 blastospora/ml menghasilkan jumlah telur terendah, yaitu 5,40 butir. Blastospora maupun konidia L. lecanii terbukti efektif dalam mengendalikan H. bradyi. Konidia memberikan hasil terbaik dalam mortalitas dan pengurangan aktivitas makan nimfa instar III, sementara blastospora juga efektif meskipun dengan hasil yang sedikit lebih rendah. Hasil penelitian ini menunjukkan L. lecanii dapat menjadi alternatif pengendalian hama yang ramah lingkungan dan berkelanjutan dibandingkan insektisida sintetik.

Downloads

Download data is not yet available.

References

Al.Anshori MY. 2017. Infektifitas Beauveria bassiana dan Lecanicillium lecanii terhadap Sycanus annulicornis Dohrn (Hemiptera: Reduviidae). Skripsi. Bogor: Institut Pertanian Bogor.

Alkhaibari AM, Carolino AT, Bull JC, Samuels RI, Butt TM. 2016. Differential pathogenicity of Metarhizium blastospores and conidia against larvae of three mosquito species. Journal of Medical Entomology. 54:696–704. DOI: https://doi.org/10.1093/jme/tjw223.

Anggarawati SH. 2014. Upaya Pengendalian Hayati Helopeltis sp., Hama Penting Tanaman Acacia crassicarpa dengan Cendawan Beauveria bassiana dan Lecanicillium lecanii. Tesis. Bogor: Institut Pertanian Bogor.

Anggarawati SH, Santoso T, Anwar R. 2017. Penggunaan cendawan entomopatogen Beauveria bassiana (Balsamo) Vuillemin dan Lecanicillium lecanii (Zimm) Zare & Gams untuk mengendalikan Helopeltis antonii sign (Hemiptera: Miridae). Jurnal Silvikultur Tropika. 8:197–202. DOI: https://doi.org/10.29244/j-siltrop.8.3.197-202.

Anggreiani Y. 2018. Uji Patogenisitas Jamur Entomopatogen Lecanicillum lecanii dan Metarhizium anisopliae terhadap Hama Phylllitreta striollata F. (Coleoptera: Chrysomelidae). Skripsi. Malang: Universitas Brawijaya.

Asmara DT, Murti RH, Afifah EN. 2021. Evaluation of Resistant Tea (Camellia sinensis L.) Clones Against Helopeltis bradyi. Journal of Agricultural Science. 43:518–525. DOI: https://doi.org/10.17503/agrivita.v43i3.2557.

Bava R, Castagna F, Piras C, Musolino V, Lupia C, Palma E, Britti D, Musella V. 2022. Entomopathogenic fungi for pests and predators control in beekeeping. Journal of Veterinary Science. 9:1–21. DOI: https://doi.org/10.3390/vetsci9020095.

Bernardo CC, Barreto LP, Silva C, de SRe, Luz C, Arruda W, Fernandes EKK. 2018. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks and Tick-borne Diseases. 9:1334–1342. DOI: https://doi.org/10.1016/j.ttbdis.2018.06.001.

Blaszczyk L, Waskiewicz A, Gromadzka K, Mikolajczak K, Chelkowski J. 2021. Sarocladium and Lecanicillium associated with maize seeds and their potential to form selected secondary metabolites. Biomolecules. 11:98. DOI: https://doi.org/10.3390/biom11010098.

de Paula AR, Silva LEI, Ribeiro A, da SIlva GA, Silva CP, M.Butt T, Ian Samuel R. 2021. Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector. Parasites & Vectors. 14:1–10. DOI: https://doi.org/10.1186/s13071-021-05055-z.

Dewi PK, Afifah L, Surjana T, Kurniati A. 2022. Infeksi cendawan entomopatogen Lecanicillium lecanii terhadap mortalitas hama penggerek ubi jalar Cylas formicarius. Jurnal Agroplasma. 2:231–238. DOI: https://doi.org/10.36987/agroplasma.v9i2.3177.

Gao Y, Xie YP, Xiong Q, Liu WM, Xue JL. 2015. Ultrastructural exploration on the histopathological change in Phenacoccus fraxinus infected with Lecanicillium lecanii. Plos One. 10:1–9. DOI: https://doi.org/10.1371/journal.pone.0117428.

Hanan A, Nazir T , Basit A, Ahmad S, Qiu D. 2020. Potential of Lecanicillium lecanii (Zimm.) as a microbial control agent for green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Pakistan Journal of Zoology. 52:131–137. DOI: https://doi.org/10.17582/journal.pjz/2020.52.1.1.131.137.

Hasan S, Ahmad A, Purwar A, Khan N, Kundan R, Gupta G. 2013. Production of extracellular enzymes in the entomopathogenic fungus Verticillium lecanii. Bioinformation. 9:238–242. DOI: https://doi.org/10.6026/97320630009238.

Hussain M, Avery PB, Zhu W, Pitino M, Arthurs SP, Wang L, Qiu D, Mao R. 2021. Pathogenicity of Cordyceps javanica (Hypocreales: Cordycipita-ceae) to Diaphorina citri (Hemiptera: Liviidae) adults, with ultrastructural observations on the fungal infection process. Agronomy. 11:1–12. DOI: https://doi.org/10.3390/agronomy11122476.

Horowitz AR, Ghanim M, Roditakis E. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science. 93:893–910. DOI: https://doi.org/10.1007/s10340-020-01210-0.

Intodia A, Prasad A, Veerwal B. 2019. Histopathology of Beauveria bassiana (Balsamo) Vuillemin, an entomopathogenic fungus, infection in the midgut of termite, Odontotermes obesus (R.) Worker. International Journal of Recent Scientific Research. 10:34.326–34.330.

Islam W, Adnan M, Shabbir A, Naveed H, Abubakar YS, Qasim M, Tayyab M , Noman A, Nisar MS, Khan KA, Ali H. 2021. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microbial Pathogenesis. 159:1-16. DOI: https://doi.org/10.1016/j.micpath.2021.105122.

Keerio AU, Nazir T, Abdulle YA, Jatoi GH, Gadhi MA, Anwar T, Sokea T, Qiu D. 2020. In vitro pathogenicity of the fungi Beauveria bassiana and Lecanicillium lecanii at different temperatures against the whitefly, Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Egyptian Journal of Biological Pest Control. 30:1–9. DOI: https://doi.org/10.1186/s41938-020-00247-8.

Keppanan R, Sivaperumal S, Hussain M, Dash CK, Banisile BS, Qasim M, Wang L. 2018. Investigation and molecular docking studies of Bassianolide from Lecanicillium lecanii against Plutella xylostella (Lepidoptera: Plutellidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 206–207:65–72. DOI: https://doi.org/10.1016/j.cbpc.2018.03.004.

Khalid MZ, AHmad S, Ngegba PM, Zhong G. 2021. Role of endocrine system in the regulation of female insect reproduction. Biology. 10:1–12. DOI: https://doi.org/10.3390/biology10070614.

Khoiroh F, Isnawati, Faizah U. 2014. Patogenitas cendawan entomopatogen (Lecanicillium lecanii) sebagai bioinsektisida untuk pengendalian hama wereng coklat secara in vivo. LenteraBio: Berkala Ilmiah Biologi. 3:114–121.

Lei Y, Hussain A, Guan Z, Wang D, Jaleel W, Lyu L, He Y. 2021. Unraveling the mode of action of Cordyceps fumosorosea: Potential biocontrol agent against Plutella xylostella (Lepidoptera: Plutellidae). Insects. 12:1–15. DOI: https://doi.org/10.3390/insects12020179.

Navik O, Godase SK, Mehendale SK. 2019. Biology of Helopeltis antonii Signoret and Pachypeltis measarum Kirkaldy (Hemiptera: Miridae) on cashew. Journal of Entomological Research. 43:319–324. DOI: https://doi.org/10.5958/0974-4576.2019.00059.8.

Maluta N, Castro, Lopes JRS. 2022. Entomopa-thogenic fungus disrupts the phloem-probing behavior of Diaphorina citri and may be an important biological control tool in citrus. Scientific Reports. 12:1–10. DOI: https://doi.org/10.1038/s41598-022-11789-2.

Marzouk AS, Swelim HH, Ali AAB. 2020. Ultrastructural changes induced by the entomo-pathogenic fungus Beauveria bassiana in the ovary of the tick Argas (Persicargas) persicus (Oken). Ticand Tick-borne Diseases. 11:1–8. DOI: https://doi.org/10.1016/j.ttbdis.2020.101507.

Mondal S, Baksi S, Koris A, Vatai G. 2016. Journey of enzymes in entomopathogenic fungi. Pacific Science Review A: Natural Science and Engineering. 18:85–99. DOI: https://doi.org/10.1016/j.psra.2016.10.001.

Morales-reyes C, Mascarin GM, Jackson MA, Hall D, Sanches-pena S, Arthurs Sp. 2018. Comparison of aerial conidia and blastospores from two entomopathogenic fungi against Diaphorina citri (Hemiptera: Liviidae) under laboratory and greenhouse conditions. Biocontrol Science and Technology. 28:737–749. DOI: https://doi.org/10.1080/09583157.2018.1487028.

Mora MAE, Castilho AMCC, Fraga ME. 2017. Classification and infection mechanism of entomopathogenic fungi. Arquivos do Instituto Biologico. 84:1–10. DOI: https://doi.org/10.1590/1808-1657000552015.

Moslim R, Kamarudin N. 2014. The use of palm kernel cake in the production of conidia and blastospores of Metarhizium anisopliae var. major for control of Oryctes rhinoceros. Journal of Oil Palm Research. 26:133–139.

Moyo D, Ishikura S, Rakotondrafara A, Clayton M, Kinoshota R, Tani M, Koike M, Aiuchi D. 2021. Behabior Change of Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) infected by Lecanicillium muscarium (Hypocreales: Cordycipitaceae). Applied Entomology and Zoology. 56:327–336. DOI: https://doi.org/10.1007/s13355-021-00738-6.

Mulyati Y, Zubaidah S, Prayogo Y. 2023. Efficacy of bio-pesticide Lecanicillium lecanii against soybean-sucking bugs Riptortus linearis during field application. Biodiversitas. 24:4829–4836. DOI: https://doi.org/10.13057/biodiv/d240924.

Nada MS, Gad AA, Soliman AM. 2022. Histological changes in the adult seed bug, Graptostethus servus (Hemiptera: Lygaeidae) treated with the entomopathogenic fungus, Beauveria bassiana (Ascomycota: Hypocreales). Egyptian Academic Journal of Biological Sciences (A.Entomology). 15:15–25. DOI: https://doi.org/10.21608/eajbsa.2022.251638.

Pedrini N. 2018. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies. Fungal Biology. 112:538–545. DOI: https://doi.org/10.1016/j.funbio.2017.10.003.

Putra GM, Hadiastono T, Afandhi A, Prayogo Y. 2013. Patogenesitas jamur entomopatogen Lecanicillium lecanii (Deuteromycotina; Hyphomycetees) terhadap Bemisia tabacia (G.) sebagai vektor virus cowpea mild mottle virus (CMMV) pada tanaman kedelai. Jurnal Hama dan Penyakit Tanaman. 1:27–39.

Rahmah NN, Sartiami D, Kusumah RYM. 2023. Diversity and population dynamics of pest in Sambawa tea plantation, West Java. IOP Conference Series: Earth and Environmental Science. 1208:012025. DOI: https://doi.org/10.1088/1755-1315/1208/1/012025.

Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, Srivastav AL, Kaushal J. 2021. An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production. 283:124657 DOI: https://doi.org/10.1016/j.jclepro.2020.124657.

Ribeiro LdeFC, Tavares J, Silva SAV, Alvez LFAA, Loth EA, Brancalhão. 2017. Infection of silkworm larvae by the entomopathogenic fungus Metarhizium anisopliae. Ciencia Rural. 47:1–5. DOI: https://doi.org/10.1590/0103-8478cr20151485.

Ritika, Joshi N, Sharma N. 2021. Chitinase enzyme activity and pathogenicity of Lecanicillium lecanii against mustard aphid Lipaphis erysimi (Kalt.). Indian Journal of Entomology. 84: 833–836. DOI: https://doi.org/10.55446/IJE.2021.88.

Rohimatun. 2021. Pengembangan Formulasi Nanoemulsi Insektisida Nabati Campuran Ekstrak Piper retrofractum Vahl. dan Curcuma xanthorrhiza Roxb. untuk Pengendalian Helopeltis antonii Sign. (Hemiptera: Miridae) pada Tanaman Kakao. Disertasi. Bogor: Institut Pertanian Bogor.

Samsudin, Khaerati, Indriati G, Hapsari AD. 2020. Kemampuan blastospora Paecilomyces fumosoroseus, Metarhizium anisopliae dan Lecanicillium lecanii dalam menginfeksi kumbang Hypothenemus hampei. Jurnal Tanaman Industri dan Penyegar. 7:79–188. DOI: https://doi.org/10.21082/jtidp.v7n3.2020.p179-188.

Sanchez-Roblero D, Huerta-Palacios G, Valle J, Gomez J, Toledo J. 2012. Effect of Beauveria bassiana on the ovarian development and reproductive potential of Anastrepha ludens (Diptera: Tephritidae). Biocontrol Science and Technology. 22:1075–1091. DOI: https://doi.org/10.1080/09583157.2012.713090.

SantAnna IN, Mota Lopes EC, de Lira AC, Poletto TB, Fonceca LZ, Delalibera Junior I. 2023. Comparative analysis of Beauveria bassiana submerged conidia with blastospores: yield, growth kinetics, and virulence. Biological Control. 185:105314 DOI: https://doi.org/10.1016/j.biocontrol.2023.105314.

Sari NM, Wijonarko A, Wagiman FX. 2019. The vertical distribution of Helopeltis bradyi and Oxyopes javanus on tea. Jurnal Perlindungan Tanaman Indonesia. 23:125–132. DOI: https://doi.org/10.22146/jpti.38118.

Soliman AM, Nada MS, Gad AA. 2022. Evaluation the effects of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocrales) on some histological and physiological parameters for the green bug Nezara viridula (L.) (Hemiptera: Pentatomidae). Alexandria Science Exchange Journal. 43:229–238. DOI: https://doi.org/10.21608/asejaiqjsae.2022.239209.

Tambingsila M, Rudias. 2015. Isolasi dan identifikasi cendawan berguna asal poso potensinya sebagai agens pengendali serangga hama. Jurnal AgroPet. 12:23–30.

Ullah MI, Altaf N, Afzal M, Arshad M, Mehmood N, Riaz M, Majeed S, Ali S, Abdullah A. 2019.

Effects of entomopathogenic fungi on the biology of Spodoptera litura (Lepidoptera: Noctuidae) and its reduviid predator, Rhynocoris marginatus (Heteroptera: Reduviidae). International Journal

of Insect Science. 11:1–7. DOI: https://doi.org/10.1177/1179543319867116.

Walton A, Tumulty JP, Toth AL, Sheehan MJ. 2020. Hormonal modulation of reproduction in Polistes fuscatus social wasps: Dual functions in both ovary development and sexual receptivity. Journal of Insect Physiology. 120:1–7. DOI: https://doi.org/10.1016/j.jinsphys.2019.103972.

Wang L, Huang J, You M, Guan X, Liu B. 2007. Toxicity and feeding deterrence of crude toxin extracts of Lecanicillium (Verticillium) lecanii (Hyphomycetes) against sweet potato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Pest Management Science. 63:381–387. DOI: https://doi.org/10.1002/ps.1359.

Wu J, Ge L, Liu F, Song Q, Stanley D. 2020. Pesticide-induced planthopper population resurgence in rice cropping systems. Annual Review of Entomology. 65:409–429. DOI: https://doi.org/10.1146/annurev-ento-011019-025215.

Zhang J-G, Xu S-Y, Ying S-H, Feng M-G. 2023. Only one of three hydrophobins (Hyd1–3) contributes to conidial hydrophobicity and insect pathogenicity of Metarhizium robertsii. Journal of Invertebrate Pathology. 201:108006. DOI: https://doi.org/10.1016/j.jip.2023.108006.

Zhu G, Ding W, Zhao H, Xue M, Chu P, Jiang L. 2023. Effects of the entomopathogenic fungus Mucor hiemalis BO-1 on the physical functions and transcriptional signatures of Bradysia odoriphaga larvae. Insects. 14:1–16. DOI: https://doi.org/10.3390/insects14020162.

Published

2024-08-31

How to Cite

Azhari, A. A., Anwar, R., Sartiami, D., & Samsudin, S. (2024). Patogenesitas blastospora dan konidia Lecanicillium lecanii Zare & Gams terhadap Helopeltis bradyi Waterhouse (Hemiptera: Miridae): Pathogenicity of blastospores and conidia of Lecanicillium lecanii Zare & Gams on Helopeltis bradyi Waterhouse (Hemiptera: Miridae). Jurnal Entomologi Indonesia, 21(2), 105–117. https://doi.org/10.5994/jei.21.2.105

Issue

Section

Articles