Local factors dominantly influence citrus red mite (Panonychus citri (McGregor)) population over landscape factors in Indonesian citrus orchards

Faktor lokal lebih dominan mempengaruhi populasi tungau merah jeruk (Panonychus citri (McGregor)) daripada faktor lanskap pada pertanaman jeruk di Indonesia

Authors

DOI:

https://doi.org/10.5994/jei.22.2.105

Keywords:

canopy density, landscape composition, pest management, population density, spatial variation

Abstract

The citrus red mite Panonychus citri (McGregor) is a major pest that can reduce the quality and yield of citrus crops. However, information regarding the local and landscape factors that influence its population dynamics remains limited. This study aimed to analyse the influence of local and landscape factors on citrus red mite population density. The research was conducted in nine citrus orchards in Malang, East Java, Indonesia. Data collected included local factors (pesticide application frequency and plant canopy density) and landscape factors (landscape composition, encompassing the number of patches (NP) and class area (CA) of semi-natural habitats). Pesticide application frequency data were obtained through farmer interviews, while canopy density was measured using a photographic method and analysed with ImageJ2 software. Landscape composition data were by digitizing land-use types within a 500-meter radius of the plot center using QGIS software and subsequently analysed using LecoS (QGIS add-ins) to obtain the NP and CA of semi-natural habitats. The generalized linear  model (GLM) analysis indicated no overall significant influence of both local and landscape factors on P. citri population density. However, it was found that the variation in mite population density was significantly influenced by citrus plant canopy density. These findings suggest that local factors, particularly the canopy microhabitat conditions, are more critical in affecting the P. citri population compared to landscape factors. Therefore, the management strategy for citrus red mite should be focused on the local, on-farm scale.

Downloads

Download data is not yet available.

References

Abobatta W. 2020. Canopy management of Washington navel orchards under Egyptian conditions. SunText Review of BioTechnology. 1:107–110.

Abobatta WF. 2018. Development, growth, and productivity of orange orchards (Citrus sinensis L) in Egypt (delta region). Advances in Agricultural Technology & Plant Sciences. 1:180003. DOI: https://doi.org/10.63235/AATPS.180003.

Afzal MBS, Banazeer A, Serrao JE, Rizwan M, Naeem A. 2023. Ecology, biology, damage, and management of sucking and chewing insect pests of citrus. In: Gonzatto MP, Santos JS (Eds.), Citrus Research-Horticultural and Human Health Aspects. IntechOpen.

Amiri-Besheli B, Toorani AH, Abbasipour H. 2020. The effect of different bio-rational and chemical pesticides on Panonychus citri and Tetranychus urticae mites under laboratory conditions. Fresenius Environmental Bulletin. 29:11089–11095.

Asaad M. 2008. Integrated control of CVPD vectors and pests causing dotted fruit on siem oranges in North Luwu Regency. Jurnal Pengkajian dan Pengembangan Teknologi Pertanian. 11:156–163.

Asriyanti I. 2013. Correlation and regression analysis: Pest population and natural enemy dynamics of certain varieties rice after implementation of superior IPM in Bone, South Sulawesi. Informatika Pertanian. 22:29–36.

Assouguem A, Joutei AB, Lahlali R, Kara M, Bari A, Ali EA, Fidan H, Laabidine HZ, Ouati YE, Farah A, Lazraq A. 2024. Evaluation of the impact of two citrus plants on the variation of Panonychus citri (Acari: Tetranychidae) and beneficial phytoseiid mites. Open Life Sciences. 19:20220837. DOI: https://doi.org/10.1515/biol-2022-0837.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009. Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution. 24:127–135. DOI: https://doi.org/10.1016/j.tree.2008.10.008.

Central Bureau of Statistics of Indonesia. 2024. Produksi Tanaman Buah-buahan 2021-2023. Available at: https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html [accessed 22 August 2024].

Defourny P, Jarvis I, Blaes X. 2014. JECAM Guidelines for cropland and crop type definition and field data collection, JECAM. Available at: https://jecam.org/wp-content/uploads/2018/10/JECAM_Guidelines_for_Field_Data_Collection_v1_0.pdf [accessed 14 February 2025].

Demard EP, Qureshi JA. 2022. The citrus red mite (Panonychus citri): A pest of citrus crops: ENY2081/IN1367, 10/2022. EDIS. 2022. DOI: https://doi.org/10.32473/edis-in1367-2022.

Demard EP, Qureshi JA. 2023. Prey suitability and life table analysis of Amblyseius swirskii and Amblyseius aerialis (Parasitiformes: Phytoseiidae) on Panonychus citri (Acariformes: Tetranychidae) and Phyllocoptruta oleivora (Acariformes: Eriophyidae). Biological Control. 182:105232. DOI: https://doi.org/10.1016/j.biocontrol.2023.105232.

Demard EP, Döker I, Qureshi JA. 2024. Incidence of eriophyid mites (Acariformes: Eriophyidae) and predatory mites (Parasitiformes: Phytoseiidae) in Florida citrus orchards under three different pest management programs. Experimental and Applied Acarology. 92:323–349. DOI: https://doi.org/10.1007/s10493-023-00882-4.

Devi M, Challa N. 2019. Impact of weather parameters on seasonality of phytophagous mites. Journal of Entomology and Zoology. 7:1095–1100.

Dong T, Tang X, Zhang H, Wang B, Zhang H, Duan C, Wang J, Wang Z, Xiong B. 2020. Effects of planting density on diurnal variation of microenvironment in Huangguogan orchards. IOP Conference Series: Earth and Environmental Science. 474:032023. DOI: https://doi.org/10.1088/1755-1315/474/3/032023.

Ebrahim A, Aiad K. 2019. Interplant distribution of the citrus rust mite, Phyllocoptruta oleivora (Ashmead) on citrus trees. Egyptian Academic Journal of Biological Sciences. A, Entomology. 12:81–87. DOI: https://doi.org/10.21608/eajbsa.2019.52569.

Faez R, Fathipour Y, Ahadiyat A, Shojaei M. 2018. How quantitative and qualitative traits of thomson navel orange are affected by citrus red mite, Panonychus citri. Journal of Agricultural Science and Technology. 20:1431–1442.

Guo X, Bian J, Zhou, Wang S, Zhou W. 2022. The effect of semi-natural habitat types on epigaeic arthropods: Isolate habitats make a critical contribution to biodiversity in agricultural landscapes. Ecological Indicators. 145:109642. DOI: https://doi.org/10.1016/j.ecolind.2022.109642.

Harrison ARH. 2006. National Land Use Database: Land Use and Land Cover Classification. Eland House, Bressenden Place.

Hidayat R, Pudjiastuti AQ, Sumarno S. 2022. Feasibility study of Tangerines and Siamese in Dau District, Malang Regency, Indonesia. International Journal of Management, Accounting & Economics. 9:155–165

Hoy MA. 2011. Agricultural Acarology: Introduction to Integrated Mite Management, CRC Press.

Jung M. 2013. LecoS-A QGIS plugin for automated landscape ecology analysis. PeerJ PrePrints. 1:e116v2. DOI: https://doi.org/10.7287/peerj.preprints.116v1.

Kasap I. 2009. The biology and fecundity of the citrus red mite Panonychus citri (McGregor)(Acari: Tetranychidae) at different temperatures under laboratory conditions. Turkish Journal of Agriculture and Forestry. 33:593–600. DOI: https://doi.org/10.3906/tar-0902-41.

Kilcher L. 2005. Organic citrus: Challenges in production and trade. In: Cuaderno de Resumenes I Conferencia Internacional de Citricultura Ecologica BIOCIITRICS. pp. 22–27.

Kurniawan E, Siregar AZ. 2023. Inventory and potential of natural enemies (predators and parasitoids) as pest controller in lemon crops in Langkat, North Sumatera. Andalasian International Journal of Entomology. 1:30–39. DOI: https://doi.org/10.25077/aijent.1.01.30-39.2023.

Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, Xiao C, Lu C, Liu Y. 2015. Citrus fruits are a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal. 9:1–14. DOI: https://doi.org/10.1186/s13065-015-0145-9.

Martin EA, Seo B, Park CR, Reineking B, Steffan‐Dewenter I. 2016. Scale‐dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecological Applications. 26:448–462. DOI: https://doi.org/10.1890/15-0856.

Meteorology, Climatology, and Geophysical Agency. 2024. Klimatologi. Available at: https://www.bmkg.go.id/iklim [accessed 5 February 2025].

Mockford A, Urbaneja A, Ashbrook K, Westbury DB. 2024. Wildflower strips enhance pest regulation services in citrus orchards. Agriculture, Ecosystems & Environment. 370:109069. DOI: https://doi.org/10.1016/j.agee.2024.109069.

Montes M, Gleiser RM. 2025. Why do spiders balloon? A review of recent evidence. Journal of Insect Conservation. 29:1–13. DOI: https://doi.org/10.1007/s10841-024-00642-8.

Möth S, Richart-Cervera S, Comsa M, Herrera RA, Hoffmann C, Kolb S, Popescu D, Reiff JM, Rusch A, Tolle P. 2023. Local management and landscape composition affect predatory mites in European wine-growing regions. Agriculture, Ecosystems & Environment. 344:108292. DOI: https://doi.org/10.1016/j.agee.2022.108292.

Muhammad FN, Rizali A, Rahardjo BT. 2022. Diversity and species composition of ants at coffee agroforestry systems in East Java, Indonesia: Effect of habitat condition and landscape composition. Biodiversitas. 23:3318–3326. DOI: https://doi.org/10.13057/biodiv/d230702.

Pasaribu DN, Rizali A, Tarno H, Priawandiputra W, Johannis M, Buchori D. 2024. Agricultural landscape composition alters ant communities in maize fields more than plant diversity enrichment. Biodiversitas. 25:205–213. DOI: https://doi.org/10.13057/biodiv/d250123.

Pilon LC, Ambus JV, Blume E, Jacques RJS, Reichert JM. 2023. Citrus orchards in agroforestry, organic, and conventional systems: Soil quality and functioning. Sustainability. 15:13060. DOI: https://doi.org/10.3390/su151713060.

Prischmann D, James D, Wright L, Snyder W. 2006. Effects of generalist phytoseiid mites and grapevine canopy structure on spider mite (Acari: Tetranychidae) biocontrol. Environmental Entomology. 35:56–67. DOI: https://doi.org/10.1603/0046-225X-35.1.56.

Puspitarini RD, Endarto O. 2021. Notes on the citrus rust mite, Phyllocoptruta oleivora (Ashmead), as a major pest of citrus in Indonesia. AGRIVITA Journal of Agricultural Science. 43:550–557. DOI: https://doi.org/10.17503/agrivita.v43i3.2997.

Puspitarini RD, Fernando I, Meidina W, Afandhi A, Tarno H, Widjayanti T, Jupri A, Wibowo AD, Apriliani AN, Putri SA. 2022. Bioekologi Tungau-Tungau Penting di Bidang Pertanian. Malang: Universitas Brawijaya Press.

QGIS Development Team. 2024. QGIS Geographic Information System. Available at: http://qgis.osgeo.org [accessed 22 August 2024].

Qureshi J, Stelinski L, Martini X, Diepenbrock LM. 2021. 2021–2022 Florida Citrus Production Guide: Rust Mites, Spider Mites, and Other Phytophagous Mites: CG002/ENY-603, rev. 3/2021. EDIS. DOI: https://doi.org/10.32473/edis-cg002-2021.

R Core Team. 2024. R: a language and environment for statistical computing. Available at: https://www.r-project.org/ [accessed 28 August 2024].

Radonjić S, Hrnčić S. 2020. Overview of the arthropod pests of citrus plants in Montenegro. Acta Zoologica Bulgarica. 72:635–648

Rahmasari DA, Musfirah M. 2020. Associated factors to the farmers’ health complaints subjective from use of pesticides in Gondosuli, Central Java. Jurnal Nasional Ilmu Kesehatan. 3:14–28.

Rattanpal H, Singh G, Singh S, Arora A. 2017. Citrus Cultivation in Punjab. Ludhiana: Punjab Agricultural University, Ludhiana, India.

Rizali A, Karindah S, Rahardjo BT, Nurindah, Sahari B. 2024. Local and landscape drivers of natural enemy communities in Indonesian oil palm plantations. Insect Conservation and Diversity. 17:856–868. DOI: https://doi.org/10.1111/icad.12747.

Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 18:1–26. DOI: https://doi.org/10.1186/s12859-017-1934-z.

Syahidah T, Rizali A, Prasetyo LB, Pudjianto, Buchori D. 2021. Composition of tropical agricultural landscape alters the structure of host-parasitoid food webs. Heliyon. 7:e07625. DOI: https://doi.org/10.1016/j.heliyon.2021.e07625.

Tehri K. 2014. A review on reproductive strategies in two spotted spider mite, Tetranychus Urticae Koch 1836 (Acari: Tetranychidae). Journal of Entomology and Zoology Studies. 2:35–39.

Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F, Gratton C, Hunt L, Ives A, Jonsson M, Larsen A. 2016. When natural habitat fails to enhance biological pest control: Five hypotheses. Biological Conservation. 204:449–458. DOI: https://doi.org/10.1016/j.biocon.2016.10.001.

Urbaneja A, Grout TG, Gravena S, Wu F, Cen Y, Stansly PA. 2020. Citrus pests in a global world. In: Talon M, Caruso M, Fred G. Gmitter, Jr. (eds.), The Genus Citrus. pp. 333–348: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-812163-4.00016-4.

Vashisth T, Zekri M, Alferez F. 2021. 2021–2022 Florida Citrus Production Guide: Canopy Management: Chapter 19, CMG16/HS1303, Rev. 4/2021. EDIS. DOI: https://doi.org/10.32473/edis-hs1303-2021.

Walter D, Proctor H. 2013. Mites: Ecology, Evolution & Behaviour: Life At A Microscale: Second Edition. Springer Dordrecht. DOI: https://doi.org/10.1007/978-94-007-7164-2.

Wicaksono RC, Mudjiono G, Rizali A, Harwanto. 2022. Faktor-Faktor yang Mempengaruhi Populasi dan Intensitas Serangan Hama Burik Kusam Jeruk Magister Thesis. Malang: Brawijaya University.

Zanardi OZ, Bordini GP, Franco AA, de Morais MR, Yamamoto PT. 2015. Development and reproduction of Panonychus citri (Prostigmata: Tetranychidae) on different species and varieties of citrus plants. Experimental and Applied Acarology. 67:565–581. DOI: https://doi.org/10.1007/s10493-015-9968-2.

Zhang Y-Q, Wen Y, Bai Q, Ma Z, Ye H-L, Sua S-C. 2019. Spatio-temporal effects of canopy microclimate on fruit yield and quality of Sapindus mukorossi Gaertn. Scientia Horticulturae. 251:136–149. DOI: https://doi.org/10.1016/j.scienta.2019.02.074.

Zhang Z. 2003. Mites of Greenhouses: Identification, Biology and Control. CABI Publishing.

Zuhran M, Mudjiono G, Puspitarini RD. 2021. Pengaruh pengelolaan agroekosistem terhadap kelimpahan kutu loncat jeruk Diaphorina citri Kuwayama (Hemiptera: Liviidae). Jurnal Entomologi Indonesia. 18:102–114. DOI: https://doi.org/10.5994/jei.18.2.102.

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed Effects Models And Extensions In Ecology With R. Springer. DOI: https://doi.org/10.1007/978-0-387-87458-6.

Downloads

Published

2025-10-25

How to Cite

Salamah, L. I., Rizali, A., & Puspitarini, R. D. (2025). Local factors dominantly influence citrus red mite (Panonychus citri (McGregor)) population over landscape factors in Indonesian citrus orchards: Faktor lokal lebih dominan mempengaruhi populasi tungau merah jeruk (Panonychus citri (McGregor)) daripada faktor lanskap pada pertanaman jeruk di Indonesia. Jurnal Entomologi Indonesia, 22(2), 105–113. https://doi.org/10.5994/jei.22.2.105