Tailoring larval diets and sugar sources to enhance development and adult survivorship of Culex quinquefasciatus (Say) (Diptera: Culicidae)

Penyesuaian pakan larva dan sumber gula untuk meningkatkan perkembangan dan kelangsungan hidup Culex quinquefasciatus (Say) (Diptera: Culicidae) dewasa

Authors

  • Rahmidevi Alfiani Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia https://orcid.org/0009-0003-7043-6379
  • Dherika Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia
  • Ahmad Syafiq Zuhri Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia
  • Ainur Subhan Firdaus Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia
  • Saila Rachma Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia
  • Muhammad Arya Rizqi Samiaji Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia
  • Yesika Nanda Pramurdya Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia
  • Sri Yusmalinar Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia
  • Intan Ahmad Sekolah Ilmu dan Teknologi Hayati, Institut Teknologi BandungJalan Ganesha No. 10, Bandung 40132, Indonesia https://orcid.org/0000-0003-0619-497X

DOI:

https://doi.org/10.5994/jei.22.3.177

Keywords:

adult survival, Culex quinquefasciatus, larval development, nutrition, sugar

Abstract

Culex quinquefasciatus (Say) (Diptera: Culicidae)  is a primary vector of lymphatic filariasis and various encephalitis viruses, posing significant public health threats. Optimizing mass-rearing protocols for this mosquito species, particularly through improved nutritional strategies, is crucial for enhancing vector control effectiveness and efficiency. This study evaluates the effects of larval diet composition and adult sugar diet on the development and survivability of C. quinquefasciatus. Larvae were fed five diets based on combinations of protein-rich dog food (DF) and carbohydrate-rich rice flour (RF): 100% DF, 100% RF, DF:RF (3:1), DF:RF (1:1), and DF:RF (1:3). Adult mosquitoes were provided with 10% sucrose, 10% dextrose, or 10% honey. Observed parameters included larval and pupal morphometry, pupation time and rate, adult wing length, and adult survival over 50 days. The results showed that the DF:RF (1:1) diet yielded optimal larval length, pupation rate, and adult female wing length, whereas the DF:RF (3:1) diet resulted in the shortest pupation time and largest larval width. The combination of the DF:RF (1:1) diet and honey was the most effective in promoting adult development and survival. These findings provide valuable insights for optimizing mass-rearing protocols, which are essential for research and vector control programs.

Downloads

Download data is not yet available.

References

Aldridge RL, Gibson S, Linthicum KJ. 2024. Aedes aegypti controls Ae. Aegypti: SIT and IIT-An Overview. Journal of the American Mosquito Control Association. 40:32–49. DOI: https://doi.org/10.2987/23-7154.

Alm J, Ohnmeiss TE, Lanza J, Vriesenga L. 1990. Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia. 84:53–57. DOI: https://doi.org/10.1007/BF00665594.

Alugoju P, Janardhanshetty SS, Subaramanian S, Periyasamy L, Dyavaiah M. 2018. Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from oxidative and apoptotic stress and extends chronological lifespan. Current Microbiology. 75:519–530. DOI: https://doi.org/10.1007/s00284-017-1412-x.

Barredo E, DeGennaro M. 2020. Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends in Parasitology. 36:473–484. DOI: https://doi.org/10.1016/j.pt.2020.02.003.

Bhattacharya S & Basu P. 2016. The southern house mosquito, Culex quinquefasciatus: Profile of a smart vector. Journal of Entomology and Zoology Studies. 4:73–81.

Bhujel P, Saha D. 2023. Rearing Protocol for Culex quinquefasciatus. Science Vision. 23:61–65. DOI: https://doi.org/10.33493/scivis.23.04.01.

Briegel H. 1990. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. Journal of Medical Entomology. 27:839–850. DOI: https://doi.org/10.1093/jmedent/27.5.839.

Brown LD, Shapiro LLM, Thompson GA, Estévez-Lao TY, Hillyer JF. 2019. Transstadial immune activation in a mosquito: Adults that emerge from infected larvae have stronger antibacterial activity in their hemocoel yet increased susceptibility to malaria infection. Ecology and Evolution. 9:6082–6095. DOI: https://doi.org/10.1002/ece3.5192.

Carvajal-Lago L, Ruiz-López MJ, Figuerola J, Martínez-de La Puente J. 2021. Implications of diet on mosquito life history traits and pathogen transmission. Environmental Research. 195:110893. DOI: https://doi.org/10.1016/j.envres.2021.110893.

Cheng Y, Tran Minh N, Tran Minh Q, Khandelwal S, Clapham HE. 2022. Estimates of Japanese encephalitis mortality and morbidity: A systematic review and modeling analysis. PLoS Neglected Tropical Diseases. 16:e0010361. DOI: https://doi.org/10.1371/journal.pntd.0010361.

Contreras-Perera Y, Flores-Pech JP, Pérez-Carillo S, Puerta-Guardo H, Geded-Moreno E, Correa-Morales F, Che-Mendoza A, et al. 2023. Different larval diets for Aedes aegypti (Diptera: Culicidae) under laboratory conditions: In preparation for a mass-rearing system. Biologia. 78:3387–3399. DOI: https://doi.org/10.1007/s11756-023-01469-5.

Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chemistry. 196:309–323. DOI: https://doi.org/10.1016/j.foodchem.2015.09.051.

Dias ACA, Rodrigues MMS, Silva AA. 2019. Effect of acute and chronic exposure to ammonia on different larval instars of Anopheles darlingi (Diptera: Culicidae). Journal of Vector Ecology: Journal of the Society for Vector Ecology. 44:112–118. DOI: https://doi.org/10.1111/jvec.12335.

Elora S & Sarkar M. 2018. Larval diet influences development growth and survival of mosquitoes in artificial rearing condition. International Journal of Mosquito Research. 5:7–11.

Foster WA. 1995. Mosquito sugar feeding and reproductive energetics. Annual Review of Entomology. 40:443–474. DOI: https://doi.org/10.1146/annurev.en.40.010195.002303.

Garjito TA, Widiarti null, Anggraeni YM, Alfiah S, Tunggul Satoto TB, Farchanny A, Samaan G, et al. 2018. Japanese encephalitis in Indonesia: An update on epidemiology and transmission ecology. Acta Tropica. 187:240–247. DOI: https://doi.org/10.1016/j.actatropica.2018.08.017.

Hellhammer F, Heinig-Hartberger M, Neuhof P, Teitge F, Jung-Schroers V, Becker SC. 2023. Impact of different diets on the survival, pupation, and adult emergence of Culex pipiens biotype molestus larvae, and infectability with the insect-specific Culex Y virus. Frontiers in Tropical Diseases. 4:1107857. DOI: https://doi.org/10.3389/fitd.2023.1107857.

Joy TK, Arik AJ, Corby-Harris V, Johnson AA, Riehle MA. 2010. The impact of larval and adult dietary restriction on lifespan, reproduction and growth in the mosquito Aedes aegypti. Experimental Gerontology. 45:685–690. DOI: https://doi.org/10.1016/j.exger.2010.04.009.

Kessler S, Vlimant M, Guerin PM. 2015. Sugar-sensitive neurone responses and sugar feeding preferences influence lifespan and biting behaviours of the afrotropical malaria mosquito, Anopheles gambiae. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology. 201:317–329. DOI: https://doi.org/10.1007/s00359-015-0978-7.

Kivuyo HS, Mbazi PH, Kisika DS, Munga S, Rumisha SF, Urasa FM, Kweka EJ. 2014. Performance of five food regimes on Anopheles gambiae senso stricto larval rearing to adult emergence in insectary. (D. Boudko, Ed.). PLoS ONE. 9:e110671. DOI: https://doi.org/10.1371/journal.pone.0110671.

Liao L-H, Wu W-Y, Berenbaum M. 2017. Impacts of dietary phytochemicals in the presence and absence of pesticides on longevity of honey bees (Apis mellifera). Insects. 8:22. DOI: https://doi.org/10.3390/insects8010022.

Linenberg I, Christophides GK, Gendrin M. 2016. Larval diet affects mosquito development and permissiveness to Plasmodium infection. Scientific Reports. 6:38230. DOI: https://doi.org/10.1038/srep38230.

Mackay AJ, Yan J, Kim C-H, Barreaux AMG, Stone CM. 2023. Larval diet and temperature alter mosquito immunity and development: Using body size and developmental traits to track carry-over effects on longevity. Parasites & Vectors. 16:434. DOI: https://doi.org/10.1186/s13071-023-06037-z.

Mamai W, Bimbile-Somda NS, Maiga H, Juarez JG, Muosa ZAI, Ali AB, Lees RS, et al. 2017. Optimization of mosquito egg production under mass rearing setting: Effects of cage volume, blood meal source and adult population density for the malaria vector, Anopheles arabiensis. Malaria Journal. 16:41. DOI: https://doi.org/10.1186/s12936-017-1685-3.

Mao W, Schuler MA, Berenbaum MR. 2013. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences. 110:8842–8846. DOI: https://doi.org/10.1073/pnas.1303884110.

Merritt RW, Dadd RH, Walker ED. 1992. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annual Review of Entomology. 37:349–374. DOI: https://doi.org/10.1146/annurev.en.37.010192.002025.

Mevi-Schütz J, Erhardt A. 2003. Effects of nectar amino acids on fecundity of the wall brown butterfly (Lasiommata megera L.). Basic and Applied Ecology. 4:413–421. DOI: https://doi.org/10.1078/1439-1791-00183.

Miyamoto T, Amrein H. 2017. Gluconeogenesis: An ancient biochemical pathway with a new twist. Fly. 11:218–223. DOI: https://doi.org/10.1080/19336934.2017.1283081.

Moser SK, Barnard M, Frantz RM, Spencer JA, Rodarte KA, Crooker IK, Bartlow AW, et al. 2023. Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasites & Vectors. 16:200. DOI: https://doi.org/10.1186/s13071-023-05792-3.

Nayar JK, Sauerman DM. 1971. The effects of diet on life-span, fecundity and flight potential of Aedes taeniorhynchus adults. Journal of Medical Entomology. 8:506–513. DOI: https://doi.org/10.1093/jmedent/8.5.506.

Njoroge TM, Calla B, Berenbaum MR, Stone CM. 2021. Specific phytochemicals in floral nectar up‐regulate genes involved in longevity regulation and xenobiotic metabolism, extending mosquito life span. Ecology and Evolution. 11:8363–8380. DOI: https://doi.org/10.1002/ece3.7665.

Nunes RD, Ventura-Martins G, Moretti DM, Medeiros-Castro P, Rocha-Santos C, Daumas-Filho CRDO, Bittencourt-Cunha PRB, et al. 2016. Polyphenol-rich diets exacerbate AMPK-mediated autophagy, decreasing proliferation of mosquito midgut microbiota, and extending vector lifespan. PLOS Neglected Tropical Diseases. 10:e0005034. DOI: https://doi.org/10.1371/journal.pntd.0005034.

Oda T, Uchida K, Mori A, Mine M, Eshita Y, Kurokawa K, Kato K, et al. 1999. Effects of high temperature on the emergence and survival of adult Culex pipiens molestus and Culex quinquefasciatus in Japan. Journal of the American Mosquito Control Association. 15:153–156.

Omotayo AI, Dogara MM, Sufi D, Shuaibu T, Balogun J, Dawaki S, Muktar B, et al. 2022. High pyrethroid-resistance intensity in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West, Nigeria. PLOS Neglected Tropical Diseases. 16:e0010525. DOI: https://doi.org/10.1371/journal.pntd.0010525.

Ong S-Q, Jaal Z. 2018. Larval age and nutrition affect the susceptibility of Culex quinquefasciatus (Diptera: Culicidae) to temephos. Journal of Insect Science. 18:38. DOI: https://doi.org/10.1093/jisesa/iey032.

Paige AS, Bellamy SK, Alto BW, Dean CL, Yee DA. 2019. Linking nutrient stoichiometry to Zika virus transmission in a mosquito. Oecologia. 191:1–10. DOI: https://doi.org/10.1007/s00442-019-04429-6.

Pallauf K, Duckstein N, Rimbach G. 2017. A literature review of flavonoids and lifespan in model organisms. Proceedings of the Nutrition Society. 76:145–162. DOI: https://doi.org/10.1017/S0029665116000720.

Paulsen PA, Custódio TF, Pedersen BP. 2019. Crystal structure of the plant symporter STP10 illuminates sugar uptake mechanism in monosaccharide transporter superfamily. Nature Communications. 10:407. DOI: https://doi.org/10.1038/s41467-018-08176-9.

Petersen V, Marchi MJ, Natal D, Marrelli MT, Barbosa AC, Suesdek L. 2016. Assessment of the correlation between wing size and body weight in captive Culex quinquefasciatus. Revista da Sociedade Brasileira de Medicina Tropical. 49:508–511. DOI: https://doi.org/10.1590/0037-8682-0039-2016.

Pooraiiouby R, Sharma A, Beard J, Reyes J, Nuss A, Gulia-Nuss M. 2018. Nutritional quality during development alters insulin-like peptides’ expression and physiology of the adult yellow fever mosquito, Aedes aegypti. Insects. 9:110. DOI: https://doi.org/10.3390/insects9030110.

Posidonio APV, Oliveira LHG, Rique HL, Nunes FC. 2021. The longevity of Aedes aegypti mosquitoes is determined by carbohydrate intake. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. 73:162–168. DOI: https://doi.org/10.1590/1678-4162-12080.

Rivera-Pérez C, Clifton ME, Noriega FG. 2017. How micronutrients influence the physiology of mosquitoes. Current Opinion in Insect Science. 23:112–117. DOI: https://doi.org/10.1016/j.cois.2017.07.002.

Scaraffia PY, Tan G, Isoe J, Wysocki VH, Wells MA, Miesfeld RL. 2008. Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes. Proceedings of the National Academy of Sciences. 105:518–523. DOI: https://doi.org/10.1073/pnas.0708098105.

Shapiro LLM, Murdock CC, Jacobs GR, Thomas RJ, Thomas MB. 2016. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria. Proceedings of the Royal Society B: Biological Sciences. 283:20160298. DOI: https://doi.org/10.1098/rspb.2016.0298.

Singaravelan N, Nee’man G, Inbar M, Izhaki I. 2005. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. Journal of Chemical Ecology. 31:2791–2804. DOI: https://doi.org/10.1007/s10886-005-8394-z.

Sivanathan MM, J Z. 2012. Nutrition and overcrowding effects on larval development and fecundity of female Aedes albopticus (Skuse). International Journal of Life Science and Medical Research. 2:63–67. DOI: https://doi.org/10.5963/LSMR0204002.

Souza RS, Virginio F, Riback TIS, Suesdek L, Barufi JB, Genta FA. 2019. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in Physiology. 10:152. DOI: https://doi.org/10.3389/fphys.2019.00152.

Sudomo M, Chayabejara S, Duong S, Hernandez L, Wu W-P, Bergquist R. 2010. Elimination of lymphatic filariasis in Southeast Asia. Advances in Parasitology. 72:205–233. DOI: https://doi.org/10.1016/S0065-308X(10)72008-X.

Thompson SN, Redak RA, Borchardt DB. 2002. The glucogenic response of a parasitized insect Manduca sexta L. is partially mediated by differential nutrient intake. Biochimica et Biophysica Acta. 1571:138–150. DOI: https://doi.org/10.1016/S0304-4165(02)00208-8.

Thompson Stewart N. 1995. Gluconeogenesis and effect of nutritional status on TCA cycle activity in the insect Manduca sexta. Biochimica et Biophysica Acta. 1245:376–384. DOI: https://doi.org/10.1016/0304-4165(95)00107-7.

Vaidyanathan R, Fleisher AE, Minnick SL, Simmons KA, Scott TW. 2008. Nutritional stress affects mosquito survival and vector competence for West Nile Virus. Vector-Borne and Zoonotic Diseases. 8:727–732. DOI: https://doi.org/10.1089/vbz.2007.0189.

Van Handel E. 1985. Rapid determination of glycogen and sugars in mosquitoes. Journal of the American Mosquito Control Association. 1:299–301.

Van Handel E, Day JF. 1989. Correlation between wing length and protein content of mosquitoes. Journal of The American Mosquito Control Association. 5:180–182.

Van Schoor T, Kelly ET, Tam N, Attardo GM. 2020. Impacts of dietary nutritional composition on larval development and adult body composition in the yellow fever mosquito (Aedes aegypti). Insects. 11:535. DOI: https://doi.org/10.3390/insects11080535.

Vrzal EM, Allan SA, Hahn DA. 2010. Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. Journal of Insect Physiology. 56:1659–1664. DOI: https://doi.org/10.1016/j.jinsphys.2010.06.011.

Woodring JL, Higgs S, Beaty BJ. 1996. Natural cycles of vector-borne pathogens. In: Beaty BJ, Marquardt WC (Eds.), Biology of Disease Vectors. pp. 51–72. University Press of Colorado.

World Health Organization [WHO]. 2020. Pictorial Identification Key of Important Disease Vectors in The WHO South-East Asia Region. World Health Organization.

Yan J, Kibech R, Stone CM. 2021. Differential effects of larval and adult nutrition on female survival, fecundity, and size of the yellow fever mosquito, Aedes aegypti. Frontiers in Zoology. 18:10. DOI: https://doi.org/10.1186/s12983-021-00395-z.

Yan J, Kim C-H, Chesser L, Ramirez JL, Stone CM. 2023. Nutritional stress compromises mosquito fitness and antiviral immunity, while enhancing dengue virus infection susceptibility. Communications Biology. 6:1123. DOI: https://doi.org/10.1038/s42003-023-05516-4.

Yue Y, Shen P, Xu Y, Park Y. 2019. p‐Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. Journal of the Science of Food and Agriculture. 99:1190–1197. DOI: https://doi.org/10.1002/jsfa.9288.

Zanin CRF, Trindade FTT, Silva A a. E. 2019. Effect of different food and sugar sources on the larval biology and adult longevity of Anopheles darlingi (Diptera: Culicidae). Tropical Biomedicine. 36:569–577.

Downloads

Published

2025-12-26

How to Cite

Alfiani, R., Dherika, Zuhri, A. S., Firdaus, A. S., Rachma, S., Samiaji, M. A. R., … Ahmad, I. (2025). Tailoring larval diets and sugar sources to enhance development and adult survivorship of Culex quinquefasciatus (Say) (Diptera: Culicidae): Penyesuaian pakan larva dan sumber gula untuk meningkatkan perkembangan dan kelangsungan hidup Culex quinquefasciatus (Say) (Diptera: Culicidae) dewasa. Jurnal Entomologi Indonesia, 22(3), 177–188. https://doi.org/10.5994/jei.22.3.177

Issue

Section

Articles