Pengaruh pemberian sampah organik terhadap pertumbuhan dan kandungan astaxanthin pada pupa black soldier fly (Hermetia illucens (Linnaeus))
DOI:
https://doi.org/10.5994/jei.21.1.23Keywords:
astaxanthin, decomposer, growth, larvae, organic waste, pupaeAbstract
Black soldier flies (Hermetia illucens (Linnaeus)) or BSF are insects that process organic waste, with larvae rich in nutrients and potential as an alternative protein source for food and feed. Astaxanthin, an antioxidant found in plants, algae, and crustaceans, is also assumed to be present in insects like BSF. This study examined the impact of feeding different organic wastes on BSF larval growth and astaxanthin content in its pupae. The experimental design involved four treatments: fruit and vegetable scraps (BS), tofu pulp (AT), rice leftovers (N), and a mix of fruit and vegetable scraps, tofu pulp and rice left-over (C), with animal feed T51 as control. Each treatment was repeated three times. Growth parameters of BSF such as weight, length, and larval characteristics, along with the chemical content of pupae, including astaxanthin, were measured. Pupae were extracted using a triphasic maceration method with n-heptane, ethyl acetate, acetonitrile, butanol-l, and distilled water. Compound identification was done using terpenoid qualitative tests, thin layer chromatography (TLC), and liquid chromatography-mass spectrometry (LC-MS). The findings revealed that fruit and vegetable scraps (BS) significantly increased larval body size, with a weight of 0.09 ± 0.04 grams/larvae and a length of 1.49 ± 0.31 cm/larvae. LC-MS analysis detected lutein derivatives, anisodamine, resveratrol derivatives, dehydroarginine, and astaxanthin derivatives with a molecular mass of 597.23 m/z in BSF larvae fed on fruit and vegetable scraps.
Downloads
References
Ashraf-Khorassani M, Nazem N, Taylor L, Coleman, W. 2005. Separation and identification of sucrose esters from turkish tobacco using liquid chromatography-mass spectrometry. Beiträge zur Tabakforschung International. 21:380–389. DOI: https://doi.org/10.2478/cttr-2013-0804.
Breemen RB, Dong L, Pajkovic ND. 2012. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. International Journal of Mass Spectrometry. 15:163–172. DOI: https://doi.org/10.1016/j.ijms.2011.07.030.
Bosch G, Zhang S, Oonincx DG, Hendrick WH. 2014. Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science. 25:3:e29. DOI: https://doi.org/10.1017/jns.2014.23.
Bystrom LM, Lewis BA, Brown DL, Rodriguez E, Obendorf RL. 2008. Characterization of phenolics by LC-UV/vis, LC-MS/MS and sugars by GC in Melicoccus bijugatus Jacq. ‘Montgomery’ fruits. Food Chemistry. 111:1017–1024. DOI: https://doi.org/10.1016/j.foodchem.2008.04.058.
Chen H, Wang H, Chen Y, Zhang H. 2005. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Anisodamine and Its Phase I and II Metabolites in Rat Urine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 824:21–29. DOI: https://doi.org/10.1016/j.jchromb.2005.07.036.
Chunxiao Jia YZ. 2017. Identification of glicoside compounds from tobaco by high performance liquid chromatography/electrospray ionization linear ion-trap tandem mass spectrometry coupled with electrospray ionization orbitrap mass spectrometry. Brazilian Chemical Society. 28:629–640.
Davenelli S, Nielsen ME, Scapagnini G. 2018. Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients. 10:522. DOI: https://doi.org/10.3390/nu10040522.
Dean AW, Glasgow BJ. 2012. Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Investigative Ophthalmology & Visual Science. 53:1773–1782. DOI: https://doi.org/10.1167/iovs.11-9419.
Gori A, Boucherle B, Rey A, Rome M, Fuzzati N, Peuchmaur M. 2021. Development of an inovative maceration technique to optimize extraction and phase partition of natural products. Fitoterapia. 148:104798. DOI: https://doi.org/10.1016/j.fitote.2020.104798.
Herdyastuti N, Raharjo TJ, Mudasir, Matsjeh S. 2009. Chitinase and chitinolytic microorganism: Isolation, characterization and potential. Indonesian Journal of Chemistry. 9:37–47. DOI: https://doi.org/10.22146/ijc.21580.
Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. 2006. Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products. 69:443–449. DOI: https://doi.org/10.1021/np050354+.
Iñaki GBJ, Antonio PCG, Efrén D, Hiram MR, Daniela GI, Damián RJ. 2022. Black soldier fly: Prospection of the inclusion of insect-based ingredients in extruded foods. Food Chemistry Advances. 1:100075. DOI: https://doi.org/10.1016/j.focha.2022.100075.
Kobayashi M, Sakamoto Y. 1999. Singlet oxygen quencing ability of astaxanthin esters from the green alga Haematococcis pluvialis. Biotechnology Letters. 21:265–269. DOI: https://doi.org/10.1023/A:1005445927433.
Krinsky NI, Deneke SM. 1982. Interaction of oxygen and oxy-radicals with Carotenoids. Journal of The National Cancer Insitute. 69:205–210.
Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science. 327:46–50. DOI: https://doi.org/10.1126/science.1174621.
Lopez M, Arce L, Garrido J, Rios A, Valcarcel M. 2004. Selective extraction of astaxanthin from Crustaceans by use of supercritical carbon dioxide. Talanta. 64:726–731. DOI: https://doi.org/10.1016/j.talanta.2004.03.048.
Mahmud MK. 2009. Tabel Komposisi Pangan Indonesia (TKPI). Jakarta: PT. Elex Media Komputindo.
Mangunwardoyo W, Aulia, Hem S. 2011. Penggunaan bungkil inti kelapa sawit hasil biokonversi sebagai substrat pertumbuhan larva Hermetia illucens L (Maggot). BIOTA. 16:166–172. DOI: https://doi.org/10.24002/biota.v16i2.95.
Mariutti LRB, Pereira DM, Mercadante AZ, Valentão P, Teixeira N, Andrade PB. 2012. Further insight on the carotenoid profile of the echinoderm Marthasterias glacialis L. MarDrugs. 10:1498–1510. DOI: https://doi.org/10.3390/md10071498.
Matthews PD, Luo R, Wurtzel ET. 2003. Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: Implications for genetic engineering of carotenoid content among cereal crops. Journal of Experimental Botany. 54:2215–2230. DOI: https://doi.org/10.1093/jxb/erg235.
Maulana NY, Nurmeiliasari, Fenita Y. 2021. Pengaruh media tumbuh yang berbeda terhadap kandungan air, protein, protein, dan lemak maggot black soldier fly (Hermetia illucens). Buletin Peternakan Tropis. 2:150–157. DOI: https://doi.org/10.31186/bpt.2.2.149-157.
Nirmal NP, Rajput MS, Prasad RG, Ahmad M. 2015. Brazilin from Caesalpina sappan heartwood and its pharmacological activities: A review. Pacific Journal of Tropical Medicine. 8:421–430. DOI: https://doi.org/10.1016/j.apjtm.2015.05.014.
Pratiwi SN, Utami N, Damayanti PN. 2022. Extraction chitosan and characterization nanoparticle chitosan from pupar sheels of black soldier fly (Hermetia illucens). Medical Sains Jurnal Ilmiah Kefarmasian. 7:963–972. DOI: https://doi.org/10.37874/ms.v7i4.516.
Rivera SM, Christou P, Canela-Garayoa R. 2013. Identification of carotenoids using mass spectrometry. Mass Spectrometry Reviews. 33:353–372. DOI: https://doi.org/10.1002/mas.21390.
Rosso de VV, Mercadante AZ. 2007. Identification and quantification of carotenoids, by HPLC-PDA, MS/MS, from Amazonian fruits. Journal Agriculture Food Chemistry. 55:5062–5072. DOI: https://doi.org/10.1021/jf0705421.
Royen A. 2022. Pertumbuhan Larva Lalat Tentara Hitam (Hermetia illucens L) yang Diberi Pakan Organik Nabati dan Hewani. Skripsi. Yogyakarta: Universitas Kristen Duta Wacana.
Salman NE, Nofiyanti E, Nurfadhilah T. 2020. Pengaruh dan efektivitas maggot sebagai proses alternatif penguraian sampah organik kota di Indonesia. Jurnal Serambi Engineering. 5:835–841. DOI: https://doi.org/10.32672/jse.v5i1.1655.
Saraswaty V, Adnyana IK, Pudjiraharti S, Rachmawati H. 2020. Potential benefits of resveratrol derivatives for treatment and prevention of metabolic syndromes. Rasayan Journal of Chemistry. 13:1363–1371. DOI: https://doi.org/10.31788/RJC.2020.1335815.
Shadpour H. 2006. Two-Dimensional and High-Throughput Electrophoretic Separation of Proteins Using Polymeric Microchips. Los Angeles: Lousiana State University and Agriculture and Mechanical College.
Suciati R. 2017. Efektivitas media pertumbuhan maggots Hermetia illucens L. (lalat tentara hitam) sebagai solusi pemanfaatan sampah organik. Biosfer: Jurnal Biologi dan Pendidikan Biologi. 2:8–13. DOI: https://doi.org/10.23969/biosfer.v2i1.356.
Swastoko ED, Madyaningrana K, Krismono. 2023. Pemanfaatan limbah organik tulang ayam dan sisa nasi sebagai pakan larva lalat tentara hitam (Hermetia illucens L.). Biotropic. 7:10–24. DOI: https://doi.org/10.29080/biotropic.v7i2.1876.
Syafitri NE, Bintang M, Falah S. 2014. Kandungan fitokimia, total fenol, dan total flavonoid ekstrak buah harendong (Melastoma affine D. Don). Journal Current Biochemistry. 1:105–115.
Tomberlin J, Adler PH, Myers HM. 2009. Development of the black soldier fly (Diptera: Stratiomuidae) in relation to temperature. Environmental Entomology. 38:930–934. DOI: https://doi.org/10.1603/022.038.0347.
Utama C, Mulyanto A. 2009. Potensi limbah pasar sayur menjadi starter fermentasi. Jurnal Kesehatan. 2:6–13.
Wardhana AH. 2016. Black soldier fly (Hermetia illucens) as an alternative protein source for animal feed. WARTOZA. 26:069–078.
Yuasa M, Kitamura A, Maoka T, Sakudoh T, Shimada T, Tsuchida K. 2014. Astaxanthin and lutein compete for accumulation into the middle silk gland via yellow cocoon gene (C)-dependent control and produce a red cocoon of Bombyx mori. Journal of Insect Biotechnology and Sericology. 83:1–11.
Zhang J, Huang L, He J, Tomberlin J. 2010. An artificial light source influence mating and oviposition of black soldier flies, Hermetia illucens. Journal of Insect Science. 10:1–7. DOI: https://doi.org/10.1673/031.010.20201.
Zhu Y, Yan K, Tu G. 1988. Separation and determination of homoisoflavonoids in Ophiopogon japonicus by reversed-phase high-performance liquid chromatography. Journal of Chromatography A. 437:265–267. DOI: https://doi.org/10.1016/S0021-9673(00)90392-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Arkey Sidauruk, Aniek Prasetyaningsih, Kukuh Madyaningrana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).