Kajian aspek keamanan nyamuk Aedes aegypti Linnaeus ber-Wolbachia di Yogyakarta, Indonesia

Assessing the safety of Wolbachia-infected Aedes aegypti Linnaeus mosquitoes in Yogyakarta, Indonesia

Authors

  • Utari Saraswati Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia
  • Endah Supriyati Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia https://orcid.org/0000-0002-9912-1608
  • Ayu Rahayu Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia; Departemen Mikrobiologi, Fakultas Kedokteran, Keperawatan dan Kesehatan Masyarakat, Universitas Gadjah Mada, Indonesia https://orcid.org/0000-0002-0833-9258
  • Anwar Rovik Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia https://orcid.org/0000-0003-0972-5406
  • Irianti Kurniasari Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia; Departemen Bioteknologi, Politeknik Pembangunan Pertanian Malang, Indonesia https://orcid.org/0000-0002-0002-0189
  • Rio Hermantara Fakultas Biomedicine, Indonesia International Institute of Life Sciences, Indonesia; Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia https://orcid.org/0000-0002-0555-637X
  • Dian Aruni Kumalawati Departemen Biologi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Sunan Kalijaga, Indonesia; Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia https://orcid.org/0000-0002-3771-1506
  • Edwin Widyanto Daniwijaya Departemen Mikrobiologi, Fakultas Kedokteran, Keperawatan dan Kesehatan Masyarakat, Universitas Gadjah Mada, Indonesia; Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia https://orcid.org/0000-0002-4544-4700
  • Iva Fitriana Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia
  • Nida Budiwati Pramuko Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia
  • Citra Indriani Departemen Biostatistik, Epidemiologi, dan Kesehatan Populasi, Fakultas Kedokteran, Keperawatan dan Kesehatan Masyarakat, Universitas Gadjah Mada, Indonesia; Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia https://orcid.org/0000-0002-2884-5916
  • Dwi Satria Wardana Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia
  • Warsito Tantowijoyo Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia
  • Riris Andono Ahmad Departemen Biostatistik, Epidemiologi, dan Kesehatan Populasi, Fakultas Kedokteran, Keperawatan dan Kesehatan Masyarakat, Universitas Gadjah Mada, Indonesia; Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia
  • Adi Utarini Departemen Kebijakan dan Manajemen Kesehatan, Fakultas Kedokteran, Keperawatan dan Kesehatan Masyarakat, Universitas Gadjah Mada, Indonesia; Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia
  • Eggi Arguni Departemen ilmu Kesehatan Anak, Fakultas Kedokteran, Keperawatan dan Kesehatan Masyarakat, Universitas Gadjah Mada, Indonesia; Pusat Kedokteran Tropis, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada. World Mosquito Program (WMP) Yogyakarta, Indonesia

DOI:

https://doi.org/10.5994/jei.20.2.117

Keywords:

Aedes aegypti, dengue, Indonesia, safety, Wolbachia

Abstract

Dengue prevention efforts are limited to the control strategies of its vector and the management of breeding sites. New alternatives for dengue vector control that are sustainable and more environmentally friendly are needed to complement the government's current efforts. Research on Wolbachia-infected Aedes aegypti Linnaeus mosquitoes as an alternative biocontrol strategy has been performed in Yogyakarta City. However, one of the concerns of the community members and stakeholders about this technology is the safety aspect regarding the transmission of Wolbachia to other species and the possibility that humans will contract Wolbachia. This study aimed to address these concerns, namely to find out whether horizontal transmission of Wolbachia occurred from A. aegypti that were released to other species and whether residents living in the released areas were infected with Wolbachia. The research was conducted in Dusun Nogotirto and Dusun Kronggahan (Sleman Regency), as well as in Dusun Jomblangan and Dusun Singosaren (Bantul Regency), Yogyakarta Special Province. Wolbachia qPCR screening using the target gene WD0513 was performed on 922 Culex quinquefasciatus Say and 331 Aedes albopictus (Skuse). ELISA test was carried out on 190 pairs of plasma samples, namely the sample before the Wolbachia frequency was established (still <80%) and the sample after it was established (>80%). The results showed no evidence of Wolbachia transfer from Wolbachia-infected A. aegypti to other mosquito species coexisting in the same habitat or to humans. This study corroborates the safety evidence of Wolbachia-infected A. aegypti technology as an alternative to control dengue virus transmission

Downloads

Download data is not yet available.

References

Amuzu HE, Simmons CP, McGraw EA. 2015. Effect of repeat human blood feeding on Wolbachia density and dengue virus infection in Aedes aegypti. Parasites & Vectors. 8:246. DOI: https://doi.org/10.1186/s13071-015-0853-y.

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, et al. 2013. The global distribution and burden of dengue. Nature. 496:504–507. DOI: https://doi.org/10.1038/nature12060.

Bowman LR, Donegan S, McCall PJ. 2016. Is dengue vector control deficient in effectiveness or evidence?: Systematic review and meta-analysis. PLOS Neglected Tropical Diseases. 10:e0004551. DOI: https://doi.org/10.1371/journal.pntd.0004551.

Buchori D, Mawan A, Nurhayati I, Aryati A, Kusnanto H, Hadi UK. 2022. Risk assessment on the release of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia. Insects. 13:924. DOI: https://doi.org/10.3390/insects13100924.

CDC. 2021. Dengue Vaccine | CDC. Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/dengue/vaccine/index.html. [accessed 19 Januari 2023].

Chen H, Zhang M, Hochstrasser M. 2020. The biochemistry of cytoplasmic incompatibility caused by endosymbiotic bacteria. Genes. 11:852. DOI: https://doi.org/10.3390/genes11080852.

Chrostek E, Teixeira L. 2015. Mutualism breakdown by amplification of Wolbachia genes. PLOS Biology. 13:e1002065. DOI: https://doi.org/10.1371/journal.pbio.1002065.

Deming R, Manrique-Saide P, Medina Barreiro A, Cardeña EUK, Che-Mendoza A, Jones B, Liebman K, Vizcaino L, Vazquez-Prokopec G, Lenhart A. 2016. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites & Vectors. 9:67. DOI: https://doi.org/10.1186/s13071-016-1346-3.

Ehlers G, Alsemgeest D. 2011. Common Mosquitoes of North Queensland: Identification & Biology of Adult Mosquitoes. Queensland: Mosquito Control Association of Australia Incorporated.

Fraser JE, O’Donnell TB, Duyvestyn JM, O’Neill SL, Simmons CP, Flores HA. 2020. Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLOS Pathogens. 16:e1008410. DOI: https://doi.org/10.1371/journal.ppat.1008410.

Gan SJ, Leong YQ, Barhanuddin MFH bin, Wong ST, Wong SF, Mak JW, Ahmad RB. 2021. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: A review. Parasites & Vectors. 14:315. DOI: https://doi.org/10.1186/s13071-021-04785-4.

Garcia JL, Navarro IT, Vidotto O, Gennari SM, Machado RZ, Luz Pereira AB da, Sinhorini IL. 2006. Toxoplasma gondii: Comparison of a rhoptry-ELISA with IFAT and MAT for antibody detection in sera of experimentally infected pigs. Experimental Parasitology. 113:100–105. DOI: https://doi.org/10.1016/j.exppara.2005.12.011.

Haine ER, Pickup NJ, Cook JM. 2005. Horizontal transmission of Wolbachia in a Drosophila community. Ecological Entomology 30:464–472. DOI: https://doi.org/10.1111/j.0307-6946.2005.00715.x.

Harapan H, Michie A, Yohan B, Shu P, Mudatsir M, Sasmono RT, Imrie A. 2019. Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Reviews in Medical Virology. 29:e2037. DOI: https://doi.org/10.1002/rmv.2037.

Iturbe-Ormaetxe I, Walker T, O’ Neill SL. 2011. Wolbachia and the biological control of mosquito-borne disease. EMBO Reports. 12:508–518. DOI: https://doi.org/10.1038/embor.2011.84.

Inácio da Silva LM, Dezordi FZ, Paiva MHS, Wallau GL. 2021. Systematic review of Wolbachia symbiont detection in mosquitoes: An entangled topic about methodological power and true symbiosis. Pathogens. 10:39. DOI: https://doi.org/10.3390/pathogens10010039.

Karyanti MR, Uiterwaal CSPM, Kusriastuti R, Hadinegoro SR, Rovers MM, Heesterbeek H, Hoes AW, Bruijning-Verhagen P. 2014. The changing incidence of dengue haemorrhagic fever in Indonesia: A 45-year registry-based analysis. BMC Infectious Diseases. 14:412. DOI: https://doi.org/10.1186/1471-2334-14-412.

Kementerian Kesehatan Republik Indonesia. 2022. Masuk Peralihan Musim, Kemenkes Minta Dinkes Waspadai Lonjakan DBD. Available at: https://www.kemkes.go.id/article/view/22092300006/masuk-peralihan-musim-kemenkes-minta-dinkes-waspadai-lonjakan-dbd.html. [accessed 19 January 2023].

Kittayapong P, Baisley KJ, Baimai V, O’Neill SL. 2000. Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). Journal of Medical Entomology. 37:340–345. DOI: https://doi.org/10.1093/jmedent/37.3.340.

Kraaijeveld K, Reumer BM, Mouton L, Kremer N, Vavre F, Alphen JJM van. 2011. Does a parthenogenesis-inducing Wolbachia induce vestigial cytoplasmic incompatibility? Naturwissenschaften. 98:175–180. DOI: https://doi.org/10.1007/s00114-010-0756-x.

Kumalawati DA, Supriyati E, Rachman MP, Oktriani R, Kurniasari I, Candrasari DS, Hidayati L, Handayaningsih AE, Probowati VC, Arianto B, Wardana DS, Pramuko NB, Utarini A, Tantowijoyo W, Arguni E. 2020. Wolbachia infection prevalence as common insects’ endosymbiont in the rural area of Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity. 21:5608-5614. DOI: https://doi.org/10.13057/biodiv/d211216.

Lambrechts L, Ferguson NM, Harris E, Holmes EC, McGraw EA, O’Neill SL, Ooi EE, Ritchie SA, Ryan PA, Scott TW, Simmons CP, Weaver SC. 2015. Assessing the epidemiological effect of Wolbachia for dengue control. The Lancet Infectious Diseases. 15:862–866. DOI: https://doi.org/10.1016/S1473-3099(15)00091-2.

Lee E, Hien Nguyen T, Yen Nguyen T, Nam Vu S, Duong Tran N, Trung Nghia L, Mai Vien Q, Dong Nguyen T, Kriiger Loterio R, Iturbe-Ormaetxe I, Flores HA, O’Neill SL, Anh Dang D, Simmons CP, Fraser JE. 2022. Transient introgression of Wolbachia into Aedes aegypti populations does not elicit an antibody response to Wolbachia surface protein in community members. Pathogens. 11:535. DOI: https://doi.org/10.3390/pathogens11050535.

McMeniman CJ, Lane AM, Fong AWC, Voronin DA, Iturbe-Ormaetxe I, Yamada R, McGraw EA, O’Neill SL. 2008. Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Applied and Environmental Microbiology. 74:6963–6969. DOI: https://doi.org/10.1128/AEM.01038-08.

McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’Neill SL. 2009. Stable introduction of a life-shortening Wolbachia Infection into the mosquito Aedes aegypti. Science. 323:141–144. DOI: https://doi.org/10.1126/science.1165326.

Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, et al. 2014. Global spread of dengue virus types: Mapping the 70 year history. Trends in Microbiology. 22:138–146. DOI: https://doi.org/10.1016/j.tim.2013.12.011.

Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL. 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 139:1268–1278. DOI: https://doi.org/10.1016/j.cell.2009.11.042.

Nguyen TH, Nguyen HL, Nguyen TY, Vu SN, Tran ND, Le TN, Vien QM, Bui TC, Le HT, Kutcher S, Hurst TP, Duong TT, Jeffery JA, Darbro JM, Kay BH, Iturbe-Ormaetxe I, Popovici J, Montgomery BL, Turley AP, Zigterman F, Cook H, Cook PE, Johnson PH, Ryan PA, Paton CJ, Ritchie SA, Simmons CP, O’Neill SL, Hoffmann AA. 2015. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors. 8:563. DOI: https://doi.org/10.1186/s13071-015-1174-x.

Ogunlade ST, Adekunle AI, Meehan MT, Rojas DP, McBryde ES. 2020. Modeling the potential of wAu-Wolbachia strain invasion in mosquitoes to control Aedes-borne arboviral infections. Scientific Reports. 10:16812. DOI: https://doi.org/10.1038/s41598-020-73819-1.

Oliveira CD de, Gonçalves DS, Baton LA, Shimabukuro PHF, Carvalho FD, Moreira LA. 2015. Broader prevalence of Wolbachia in insects including potential human disease vectors. Bulletin of Entomological Research. 105:305–315. DOI: https://doi.org/10.1017/S0007485315000085.

Overgaard HJ, Pientong C, Thaewnongiew K, Bangs MJ, Ekalaksananan T, Aromseree S, Phanitchat T, Phanthanawiboon S, Fustec B, Corbel V, Cerqueira D, Alexander N. 2018. Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand: Study protocol for a cluster-randomized controlled trial. Trials. 19:122. DOI: https://doi.org/10.1186/s13063-018-2490-1.

Popovici J, Moreira LA, Poinsignon A, Iturbe-Ormaetxe I, McNaughton D, O’Neill SL. 2010. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Memórias do Instituto Oswaldo Cruz. 105:957–964. DOI: https://doi.org/10.1590/S0074-02762010000800002.

Rather IA, Parray HA, Lone JB, Paek WK, Lim J, Bajpai VK, Park Y-H. 2017. Prevention and control strategies to counter dengue virus infection. Frontiers in Cellular and Infection Microbiology. 7:336. DOI: https://doi.org/10.3389/fcimb.2017.00336.

Reiner RC, Achee N, Barrera R, Burkot TR, Chadee DD, Devine GJ, Endy T, Gubler D, Hombach J, Kleinschmidt I, Lenhart A, Lindsay SW, Longini I, Mondy M, Morrison AC, Perkins TA, Vazquez-Prokopec G, Reiter P, Ritchie SA, Smith DL, Strickman D, Scott TW. 2016. Quantifying the epidemiological impact of vector control on dengue. PLOS Neglected Tropical Diseases. 10:e0004588. DOI: https://doi.org/10.1371/journal.pntd.0004588.

Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, DeJong PA, Standfield GW, Sale RW, O’Neill SL. 2011. A secure semi-field system for the study of Aedes aegypti. PLoS Neglected Tropical Diseases. 5:e988. DOI: https://doi.org/10.1371/journal.pntd.0000988.

Sinkins SP, Braig HR, Oneill SL. 1995. Wolbachia pipientis: Bacterial density and unidirectional cytoplasmic incompatibility between infected populations of Aedes albopictus. Experimental Parasitology. 81:284–291. DOI: https://doi.org/10.1006/expr.1995.1119.

Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, Hay SI, Bedi N, Bensenor IM, Castañeda-Orjuela CA, Chuang TW, Gibney KB, Memish ZA, Rafay A, Ukwaja KN, Yonemoto N, Murray CJL. 2016. The global burden of dengue: An analysis from the global burden of disease Study 2013. The Lancet Infectious Diseases. 16:712–723. DOI: https://doi.org/10.1016/S1473-3099(16)00026-8.

Tantowijoyo W, Andari B, Arguni E, Budiwati N, Nurhayati I, Fitriana I, Ernesia I, Daniwijaya EW, Supriyati E, Yusdiana DH, Victorius M, Wardana DS, Ardiansyah H, Ahmad RA, Ryan PA, Simmons CP, Hoffmann AA, Rancès E, Turley AP, Johnson P, Utarini A, O’Neill SL. 2020. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLOS Neglected Tropical Diseases. 14:e0008157. DOI: https://doi.org/10.1371/journal.pntd.0008157.

Tsheten T, Gray DJ, Clements ACA, Wangdi K. 2021. Epidemiology and challenges of dengue surveillance in the WHO South-East Asia Region. Transactions of The Royal Society of Tropical Medicine and Hygiene. 115:583–599. DOI: https://doi.org/10.1093/trstmh/traa158.

Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, Supriyati E, Wardana DS, Meitika Y, Ernesia I, Nurhayati I, Prabowo E, Andari B, Green BR, Hodgson L, Cutcher Z, Rancès E, Ryan PA, O’Neill SL, Dufault SM, Tanamas SK, Jewell NP, Anders KL, Simmons CP; AWED Study Group. 2021. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. New England Journal of Medicine. 384:2177–2186. DOI: https://doi.org/10.1056/NEJMoa2030243.

Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA. 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 476:450–453. DOI: https://doi.org/10.1038/nature10355.

Werren JH, Baldo L, Clark ME. 2008. Wolbachia: Master manipulators of invertebrate biology. Nature Reviews Microbiology. 6:741–751. DOI: https://doi.org/10.1038/nrmicro1969.

White PM, Pietri JE, Debec A, Russell S, Patel B, Sullivan W. 2017. Mechanisms of horizontal cell-to-cell transfer of Wolbachia spp. in Drosophila melanogaster. Applied and Environmental Microbiology. 83:e03425-16. DOI: https://doi.org/10.1128/AEM.03425-16.

World Mosquito Program. 2022. Indonesia | World Mosquito Program. Available at: https://www.worldmosquitoprogram.org/en/global-progress/indonesia. [accessed 11 January 2023].

Yeap H, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA, Hoffmann AA. 2014. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasites & Vectors. 7:58. DOI: https://doi.org/10.1186/1756-3305-7-58.

Zhou XF, Li ZX. 2016. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect. Scientific Reports. 6:39200. DOI: https://doi.org/10.1038/srep39200.

Published

2023-08-14

How to Cite

Saraswati, U. ., Supriyati, E. ., Rahayu, A. ., Rovik, A. ., Kurniasari, I. ., Hermantara, R. ., … Arguni, E. . (2023). Kajian aspek keamanan nyamuk Aedes aegypti Linnaeus ber-Wolbachia di Yogyakarta, Indonesia: Assessing the safety of Wolbachia-infected Aedes aegypti Linnaeus mosquitoes in Yogyakarta, Indonesia. Jurnal Entomologi Indonesia, 20(2), 117. https://doi.org/10.5994/jei.20.2.117

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.